Fractography study of Co-Cr-Ni-Mo alloy fatigue wires drawn with different drawing practices

[1]  M. Tan,et al.  Fatigue behavior in Co-Cr-Ni-Mo medical wires drawn with different drawing practices. , 2019, Journal of the mechanical behavior of biomedical materials.

[2]  M. Tan,et al.  Plastic Instability in Co-Cr-Ni-Mo alloy wires drawn with different drawing practices , 2019, Materials Science and Engineering: A.

[3]  M. Tan,et al.  Analysis of Strain Rate Sensitivity and Strain Rate Hardening in Co–Cr–Ni–Mo Wires Drawn with Different Drawing Practices , 2019, Metals and Materials International.

[4]  M. Tan,et al.  Study on the Deformation Homogeneity and Electrical Conductivity in Co-Cr-Ni-Mo Wires Drawn with Different Drawing Practices , 2018, Journal of Materials Engineering and Performance.

[5]  M. Tan,et al.  Influence of drawing practices on the mechanical, texture and work hardening characteristics of Co-Cr-Ni-Mo wires , 2018 .

[6]  H. Mayer,et al.  Fatigue testing of thin CoNiCr wire up to 1010 cycles , 2017 .

[7]  J. Lewandowski,et al.  Fatigue and fracture of wires and cables for biomedical applications , 2016 .

[8]  Jeong Hun Lee,et al.  Enhancing high-cycle fatigue properties of cold-drawn Fe–Mn–C TWIP steels , 2016 .

[9]  A. Pineau Crossing grain boundaries in metals by slip bands, cleavage and fatigue cracks , 2015, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[10]  Elizabeth A. Thompson,et al.  Wire failure prediction for a rotary beam fatigue tester , 2014 .

[11]  M. Prasad,et al.  Microstructure and mechanical behavior of an as-drawn MP35N alloy wire , 2014 .

[12]  Michael D. Sangid,et al.  The physics of fatigue crack initiation , 2013 .

[13]  Haitao Zhang,et al.  Embrittlement phenomenon of Ag core MP35N cable as lead conductor in medical device. , 2013, Journal of the mechanical behavior of biomedical materials.

[14]  Ling Wang,et al.  Effect of Stress Relief Process on Mechanical Performance of MP35N Cable as Lead Conductor in Medical Device , 2013 .

[15]  Nagaraja Iyyer,et al.  On the Correlation Between Fatigue Striation Spacing and Crack Growth Rate: A Three-Dimensional (3-D) X-ray Synchrotron Tomography Study , 2011 .

[16]  Jiun-Shyan Chen,et al.  Nonuniform cleavage cracking across persistent grain boundary , 2011 .

[17]  S. Suresh,et al.  Fracture toughness and fatigue crack growth characteristics of nanotwinned copper , 2011 .

[18]  Paul C. Paris,et al.  Subsurface crack initiation and propagation mechanisms in gigacycle fatigue , 2010 .

[19]  K. Chan,et al.  Roles of microstructure in fatigue crack initiation , 2010 .

[20]  B. G. Pound Electrochemical behavior of cobalt-chromium alloys in a simulated physiological solution. , 2010, Journal of biomedical materials research. Part A.

[21]  J. Lewandowski,et al.  Tension and fatigue behavior of silver-cored composite multi-strand cables used as implantable cables and electrodes , 2008 .

[22]  J. M. Larsen,et al.  Microstructural Influences on Very-High-Cycle Fatigue-Crack Initiation in Ti-6246 , 2008 .

[23]  J. Schaffer An Examination of Fatigue Initiation Mechanisms in Thin 35Co-35Ni-20Cr-10Mo Medical Grade Wires , 2008 .

[24]  H. Mughrabi,et al.  Specific features and mechanisms of fatigue in the ultrahigh-cycle regime , 2006 .

[25]  J. Schaffer A probabilistic approach to modeling microstructural variability and fatigue behavior in ASTM F 562 medical grade wire , 2006 .

[26]  J. Zuidema,et al.  Shear lips on fatigue fracture surfaces of aluminum alloys , 2005 .

[27]  Subra Suresh,et al.  Grain size effects on the fatigue response of nanocrystalline metals , 2003 .

[28]  T. Stephenson,et al.  Optimization of Melt Chemistry and Properties of 35Cobalt-35Nickel -20Chromium-10Molybdenum Alloy Medical Grade Wire , 2003 .

[29]  Mukul Kumar,et al.  Electron Backscatter Diffraction in Materials Science , 2000 .

[30]  D. Hull,et al.  Fractography: Observing, Measuring and Interpreting Fracture Surface Topography , 1999 .

[31]  S. Kalidindi Modeling the strain hardening response of low SFE FCC alloys , 1998 .

[32]  U. F. Kocks,et al.  Texture and Anisotropy: Preferred Orientations in Polycrystals and their Effect on Materials Properties , 1998 .

[33]  J. Meagher,et al.  Rotary bending fatigue of coils and wires used in cardiac lead design. , 1998, Journal of biomedical materials research.

[34]  S. Kalidindi,et al.  Strain hardening regimes and microstructural evolution during large strain compression of low stacking fault energy fcc alloys that form deformation twins , 1997 .

[35]  M. Schaldach Materials in Pacemaker Technology , 1992 .

[36]  J. Schijve,et al.  FRACTOGRAPHIC ANALYSIS OF CRACK GROWTH AND SHEAR LIP DEVELOPMENT UNDER SIMPLE VARIABLE‐AMPLITUDE LOADING , 1990 .

[37]  S. Kocańda Fatigue Failure of Metals , 1978 .

[38]  J. Galante,et al.  MP35N: a corrosion resistant, high strength alloy for orthopedic surgical impants: bio-assay results. , 1975, Journal of biomedical materials research.

[39]  C. Younkin Multiphase MP35N alloy for medical implants. , 1974, Journal of biomedical materials research.