Evolution of linear absorption and nonlinear optical properties in V-shaped ruthenium(II)-based chromophores.

In this article, we describe a series of complexes with electron-rich cis-{Ru(II)(NH(3))(4)}(2+) centers coordinated to two pyridyl ligands bearing N-methyl/arylpyridinium electron-acceptor groups. These V-shaped dipolar species are new, extended members of a class of chromophores first reported by us (Coe, B. J. et al. J. Am. Chem. Soc. 2005, 127, 4845-4859). They have been isolated as their PF(6)(-) salts and characterized by using various techniques including (1)H NMR and electronic absorption spectroscopies and cyclic voltammetry. Reversible Ru(III/II) waves show that the new complexes are potentially redox-switchable chromophores. Single crystal X-ray structures have been obtained for four complex salts; three of these crystallize noncentrosymmetrically, but with the individual molecular dipoles aligned largely antiparallel. Very large molecular first hyperpolarizabilities beta have been determined by using hyper-Rayleigh scattering (HRS) with an 800 nm laser and also via Stark (electroabsorption) spectroscopic studies on the intense, visible d --> pi* metal-to-ligand charge-transfer (MLCT) and pi --> pi* intraligand charge-transfer (ILCT) bands. The latter measurements afford total nonresonant beta(0) responses as high as ca. 600 x 10(-30) esu. These pseudo-C(2v) chromophores show two substantial components of the beta tensor, beta(zzz) and beta(zyy), although the relative significance of these varies with the physical method applied. According to HRS, beta(zzz) dominates in all cases, whereas the Stark analyses indicate that beta(zyy) is dominant in the shorter chromophores, but beta(zzz) and beta(zyy) are similar for the extended species. In contrast, finite field calculations predict that beta(zyy) is always the major component. Time-dependent density functional theory calculations predict increasing ILCT character for the nominally MLCT transitions and accompanying blue-shifts of the visible absorptions, as the ligand pi-systems are extended. Such unusual behavior has also been observed with related 1D complexes (Coe, B. J. et al. J. Am. Chem. Soc. 2004, 126, 3880-3891).

[1]  R. Twieg,et al.  Λ-like chromophores for chiral non-linear optical materials , 2001 .

[2]  Inge Asselberghs,et al.  Syntheses and spectroscopic and quadratic nonlinear optical properties of extended dipolar complexes with ruthenium(II) ammine electron donor and N-methylpyridinium acceptor groups. , 2004, Journal of the American Chemical Society.

[3]  Heesink,et al.  Determination of hyperpolarizability tensor components by depolarized hyper Rayleigh scattering. , 1993, Physical review letters.

[4]  M. Samoć,et al.  Electrochemical switching of the cubic nonlinear optical properties of an aryldiethynyl-linked heterobimetallic complex between three distinct states. , 2006, Angewandte Chemie.

[5]  R. Twieg,et al.  (DICYANOMETHYLENE)PYRAN DERIVATIVES WITH C2V SYMMETRY : AN UNUSUAL CLASS OF NONLINEAR OPTICAL CHROMOPHORES , 1996 .

[6]  Persoons,et al.  Hyper-Rayleigh scattering in solution. , 1991, Physical review letters.

[7]  P. Das,et al.  Quadratic nonlinearity of one- and two-electron oxidized metalloporphyrins and their switching in solution. , 2008, The journal of physical chemistry. B.

[8]  K. Wostyn,et al.  High-frequency demodulation of multiphoton fluorescence in long-wavelength hyper-Rayleigh scattering. , 1999, Optics letters.

[9]  K. Clays,et al.  X-Shaped electro-optic chromophore with remarkably blue-shifted optical absorption. Synthesis, characterization, linear/nonlinear optical properties, self-assembly, and thin film microstructural characteristics. , 2006, Journal of the American Chemical Society.

[10]  B. Cho,et al.  Nonlinear optical and two-photon absorbtion properties of 1,3,5-tricyano-2,4,6-tris(styryl)benzene-containing octupolar oligomers. , 2002, Chemistry.

[11]  Kai Song,et al.  Syntheses and properties of two-dimensional charged nonlinear optical chromophores incorporating redox-switchable cis-tetraammineruthenium(II) centers. , 2005, Journal of the American Chemical Society.

[12]  Inge Asselberghs,et al.  Liquid crystals from C3-symmetric mesogens for second-order nonlinear optics. , 2006, Angewandte Chemie.

[13]  S. Barlow,et al.  Electronic and optical properties of conjugated group 8metallocene derivatives , 2000 .

[14]  J. Zyss,et al.  All-optical orientation of photoisomerizable octupolar zinc(II) complexes in polymer films. , 2004, Journal of the American Chemical Society.

[15]  Second-order off-diagonal hyperpolarizability tensor components of substituted carbazoles by hyper-Rayleigh scattering depolarization measurements , 1998 .

[16]  J. Zyss,et al.  Molecular engineering of octupolar tris(bipyridyl) metal complexes , 2001 .

[17]  Joseph Zyss,et al.  Nonlinear optics in multipolar media: theory and experiments , 1994 .

[18]  A. Forni,et al.  Copper(II) complexes of salen analogues with two differently substituted (push-pull) salicylaldehyde moieties. A study on the modulation of electronic asymmetry and nonlinear optical properties. , 2006, Inorganic chemistry.

[19]  Joseph Zyss,et al.  Chiral metal complexes with large octupolar optical nonlinearities , 1995, Nature.

[20]  W. R. Wadt,et al.  Ab initio effective core potentials for molecular calculations , 1984 .

[21]  W. R. Wadt,et al.  Ab initio effective core potentials for molecular calculations. Potentials for main group elements Na to Bi , 1985 .

[22]  K. Clays,et al.  Electrochemical, spectroelectrochemical, and molecular quadratic and cubic nonlinear optical properties of alkynylruthenium dendrimers. , 2006, Journal of the American Chemical Society.

[23]  J. Qin,et al.  The design of second-order nonlinear optical chromophores exhibiting blue-shifted absorption and large nonlinearities: the role of the combined conjugation bridge , 2001 .

[24]  Z. Su,et al.  Computational Study on Second-Order Nonlinear Response of a Series of Two-Dimensional Carbazole-Cored Chromophores , 2008 .

[25]  M. Samoć,et al.  Organometallic complexes for nonlinear optics. 30.1 electrochromic linear and nonlinear optical properties of alkynylbis(diphosphine)ruthenium complexes. , 2003, Journal of the American Chemical Society.

[26]  Peter Krämer,et al.  Dipolar NLO‐phores with large off‐diagonal components of the second‐order polarizability tensor , 1997 .

[27]  C. Andraud,et al.  Lanthanide Complexes for Nonlinear Optics: From Fundamental Aspects to Applications , 2009 .

[28]  Mark G. Humphrey,et al.  Organometallic complexes for nonlinear optics. 33. Electrochemical switching of the third-order nonlinearity observed by simultaneous femtosecond degenerate four-wave mixing and pump-probe measurements , 2003 .

[29]  C. Bräuchle,et al.  Synthesis and nonlinear optical properties of carbonylrhenium bromide complexes with conjugated pyridines , 1999 .

[30]  Ian R. Whittall,et al.  Organometallic Complexes in Nonlinear Optics I: Second-Order Nonlinearities , 1998 .

[31]  T. Renouard,et al.  Dipolar and Non‐Dipolar Pyridine and Bipyridine Metal Complexes for Nonlinear Optics , 2000 .

[32]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[33]  Zi-yu Wang,et al.  Theoretical studies on anisotropy of the first hyperpolarizabilities in one- and two-dimensional charge transfer molecules: Role of frequency dispersion , 2007 .

[34]  P. Doan,et al.  1H NMR, EPR, UV-Vis, and Electrochemical Studies of Imidazole Complexes of Ru(III). Crystal Structures of cis-[(Im)(2)(NH(3))(4)Ru(III)]Br(3) and [(1MeIm)(6)Ru(II)]Cl(2).2H(2)O. , 1996, Inorganic chemistry.

[35]  Inge Asselberghs,et al.  Efficient, Reversible Redox-Switching of Molecular First Hyperpolarizabilities in Ruthenium(II) Complexes Possessing Large Quadratic Optical Nonlinearities. , 1999, Angewandte Chemie.

[36]  S. Boggs,et al.  SYNTHESES OF CIS- AND TRANS-TETRAAMMINEDICHLORORUTHENIUM(III) CHLORIDE , 1996 .

[37]  K. Clays,et al.  Lambda-type regioregular oligothiophenes: synthesis and second-order NLO properties. , 2007, The Journal of organic chemistry.

[38]  K. Clays,et al.  A molecular multiproperty switching array based on the redox behavior of a ferrocenyl polychlorotriphenylmethyl radical. , 2004, Angewandte Chemie.

[39]  Joseph Zyss,et al.  Propeller-Shaped Octupolar Molecules Derived from Triphenylbenzene for Nonlinear Optics: Synthesis and Optical Studies , 2003 .

[40]  J. Zyss,et al.  Zinc(II) as a versatile template for the design of dipolar and octupolar NLO-phores. , 2002, Journal of the American Chemical Society.

[41]  P. Lacroix Second‐Order Optical Nonlinearities in Coordination Chemistry: The Case of Bis(salicylaldiminato)metal Schiff Base Complexes , 2001 .

[42]  I. Fragalà,et al.  Second‐Order Nonlinear Optical Properties of Tetraaza‐Coordinated Nickel(II) Complexes , 2003 .

[43]  W. R. Wadt,et al.  Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals , 1985 .

[44]  B. Brunschwig,et al.  Syntheses and properties of heterobimetallic ligand-bridged ruthenium(II)/rhenium(I) complexes and their monometallic congeners , 2008 .

[45]  C. Creutz,et al.  Charge-transfer spectra of ruthenium(II) complexes , 1971 .

[46]  J. Zyss,et al.  New bipyridyl ligands bearing azo- and imino-linked chromophores. Synthesis and nonlinear optical studies of related dipolar zinc complexes† , 1999 .

[47]  Joseph Zyss,et al.  High Efficiency and Quadratic Nonlinear Optical Properties of a Fully Optimized 2D Octupolar Crystal Characterized by Nonlinear Microscopy , 2005 .

[48]  J. Oudar,et al.  Optical nonlinearities of conjugated molecules. Stilbene derivatives and highly polar aromatic compounds , 1977 .

[49]  Zhen-Li Huang,et al.  Synthesis, structure, and intense second harmonic generation of Λ-shaped s-triazine derivative , 2005 .

[50]  J. Leszczynski,et al.  First hyperpolarizabilities of ionic octupolar molecules: structure–function relationships and solvent effects , 2004 .

[51]  Joseph Zyss,et al.  Role of spatial distortions on the quadratic nonlinear optical properties of octupolar organic and metallo-organic molecules. , 2007, The Journal of chemical physics.

[52]  R. W. Terhune,et al.  Measurements of Nonlinear Light Scattering , 1965 .

[53]  Z. Otwinowski,et al.  [20] Processing of X-ray diffraction data collected in oscillation mode. , 1997, Methods in enzymology.

[54]  Joseph Zyss,et al.  Molecular engineering implications of rotational invariance in quadratic nonlinear optics: From dipolar to octupolar molecules and materials , 1993 .

[55]  J. Oudar,et al.  Hyperpolarizabilities of the nitroanilines and their relations to the excited state dipole moment , 1977 .

[56]  Y. Liu,et al.  Theoretical investigation on second-order nonlinear optical properties of (dicyanomethylene)-pyran derivatives , 2001 .

[57]  J. Perdew,et al.  Density-functional approximation for the correlation energy of the inhomogeneous electron gas. , 1986, Physical review. B, Condensed matter.

[58]  J. Zyss,et al.  Synthesis of a highly thermally stable octupolar polyimide for nonlinear optics. , 2001, Chemical communications.

[59]  I. Fragalà,et al.  Dipolar donor-acceptor-substituted schiff base complexes with large off-diagonal second-order nonlinear optical tensor components. , 2001, Chemistry.

[60]  O. Maury,et al.  Molecular engineering of octupolar NLO molecules and materials based on bipyridyl metal complexes. , 2005, Accounts of chemical research.

[61]  Seth R Marder,et al.  Organic nonlinear optical materials: where we have been and where we are going. , 2006, Chemical communications.

[62]  J. Heck,et al.  Mono- and dinuclear sesquifulvalene complexes, organometallic materials with large nonlinear optical properties , 1999 .

[63]  E. Bergmann,et al.  Experiments in the 1,2-Di-(γ-pyridyl)-ethane Series1 , 1952 .

[64]  J. Orduna,et al.  Linear and Nonlinear Optical Properties of Pyridine-Based Octopolar Chromophores Designed for Chemical Sensing. Joint Spectroscopic and Theoretical Study , 2007 .

[65]  M. Papadopoulos,et al.  Off-diagonal second-order polarizability of N,N′-dihexyl-1,3-diamino-4,6-dinitrobenzene , 2003 .

[66]  Sophie Brasselet,et al.  Octupolar Films with Significant Second‐Harmonic Generation , 2007 .

[67]  Benoît Champagne,et al.  Large Off-Diagonal Contribution to the Second-Order Optical Nonlinearities of Λ-Shaped Molecules , 2003 .

[68]  I. Fragalà,et al.  Two-dimensional characteristics of the second-order nonlinear optical response in dipolar donor–acceptor coordination complexes , 2002 .

[69]  B. Coe,et al.  Switchable nonlinear optical metallochromophores with pyridinium electron acceptor groups. , 2006, Accounts of chemical research.

[70]  M. Marques,et al.  Third-Order Nonlinear Optical Properties of DA-salen-Type Nickel(II) and Copper(II) Complexes , 2006 .

[71]  Koen Clays,et al.  High-frequency demodulation of multi-photon fluorescence in hyper-Rayleigh scattering , 1998 .

[72]  Joseph Zyss,et al.  Quadratic nonlinear susceptibility of octupolar chiral ions , 1993 .

[73]  Inge Asselberghs,et al.  Molecular quadratic non-linear optical properties of dipolar trans-tetraammineruthenium(II) complexes with pyridinium and thiocyanate ligands , 2003 .

[74]  Joseph Zyss,et al.  Synthesis, linear, and quadratic-nonlinear optical properties of octupolar D3 and D2d bipyridyl metal complexes. , 2004, Chemistry.

[75]  B. Coe,et al.  Trans-effects in octahedral transition metal complexes , 2000 .

[76]  Koen Clays,et al.  Reversible switching of the first hyperpolarisability of an NLO-active donor–acceptor molecule based on redox interconversion of the octamethylferrocene donor unit , 2001 .

[77]  F. Tessore,et al.  Coordination and organometallic compounds and inorganic–organic hybrid crystalline materials for second-order non-linear optics , 2006 .

[78]  Mark A. Ratner,et al.  Design and construction of molecular assemblies with large second-order optical nonlinearities. Quantum chemical aspects , 1994 .

[79]  Benjamin J. Coe,et al.  Enhancement of Molecular Quadratic Hyperpolarizabilities in Ruthenium(II) 4,4‘-Bipyridinium Complexes by N-Phenylation , 1998 .

[80]  P. van der Sluis,et al.  BYPASS: an effective method for the refinement of crystal structures containing disordered solvent regions , 1990 .

[81]  M. Sano,et al.  Synthesis of cis-[Ru(NH[sub 3])[sub 4](acetone)[sub 2]][sup 2+]: A valuable precursor for cis-tetraammineruthenium(II) chemistry , 1993 .

[82]  A. Aukauloo,et al.  Synthesis, Crystal Structure, and Second-Order Nonlinear Optical Properties of a New Bis(salicylaldiminato)nickel(II) Metal Complex , 1999 .

[83]  Benjamin J. Coe,et al.  Electroabsorption Spectroscopic Studies of Dipolar Ruthenium(II) Complexes Possessing Large Quadratic Nonlinear Optical Responses. , 2002 .

[84]  Koen Clays,et al.  In situ reversible electrochemical switching of the molecular first hyperpolarizability , 2003 .

[85]  S. Bella On the determination of the molecular static first hyperpolarisability: how reliable are literature data? , 2002 .

[86]  S. Boxer,et al.  Stark spectroscopy: applications in chemistry, biology, and materials science. , 1997, Annual review of physical chemistry.

[87]  J. Hupp,et al.  Electroabsorption spectroscopy of molecular inorganic compounds , 1998 .

[88]  Inge Asselberghs,et al.  Pentacyanoiron(II) as an electron donor group for nonlinear optics: medium-responsive properties and comparisons with related pentaammineruthenium(II) complexes. , 2006, Journal of the American Chemical Society.

[89]  G. Germain,et al.  Azastilbenes. 1. Synthesis, characterization, and structure , 1980 .

[90]  Shuji Okada,et al.  Tunable Sub-Terahertz Wave Generation from an Organic DAST Crystal , 2005 .

[91]  Gulliver T. Dalton,et al.  Independent switching of cubic nonlinear optical properties in a ruthenium alkynyl cruciform complex by employing protic and electrochemical stimuli(1). , 2007, Journal of the American Chemical Society.

[92]  B H Robinson,et al.  Comparison of static first hyperpolarizabilities calculated with various quantum mechanical methods. , 2007, The journal of physical chemistry. A.

[93]  Akira Watanabe,et al.  Fourier analysis of the femtosecond hyper-Rayleigh scattering signal from ionic fluorescent hemicyanine dyes , 2000 .

[94]  Bruce S. Brunschwig,et al.  Electroabsorption spectroscopy of charge transfer states of transition metal complexes , 1996 .

[95]  J. Orduna,et al.  Theoretical analyses of the effects on the linear and quadratic nonlinear optical properties of N-arylation of pyridinium groups in stilbazolium dyes. , 2005, The journal of physical chemistry. A.

[96]  Eric Hendrickx,et al.  Hyper-Rayleigh Scattering in Isotropic Solution , 1998 .

[97]  Mark G. Humphrey,et al.  Organometallics in Nonlinear Optics II: Third-Order Nonlinearities and Optical Limiting Studies , 1999 .

[98]  N. Long,et al.  Organometallic Compounds for Nonlinear Optics—The Search for En‐light‐enment! , 1995 .

[99]  J. Orduna,et al.  Molecular salts with diquat-based electron acceptors for nonlinear optics. , 2005, Journal of the American Chemical Society.

[100]  James Raftery,et al.  Nonlinear optical and related properties of iron(II) pentacyanide complexes with quaternary nitrogen electron acceptor units. , 2009, Inorganic chemistry.

[101]  I. Fragalà,et al.  Synthesis, Characterization, Optical Spectroscopic, Electronic Structure, and Second-Order Nonlinear Optical (NLO) Properties of a Novel Class of Donor−Acceptor Bis(salicylaldiminato)nickel(II) Schiff Base NLO Chromophores , 1997 .

[102]  Jean-Michel Nunzi,et al.  Donor-acceptor complexes incorporating ferrocenes: spectroelectrochemical characterisation, quadratic hyperpolarisabilities and the effects of oxidising and reducing agents , 2001 .

[103]  Peter Günter,et al.  Generation of terahertz pulses through optical rectification in organic DAST crystals: theory and experiment , 2006 .

[104]  A. Hermann,et al.  Electronic properties of some tetracyanoquinodimethane complexes , 1969 .

[105]  I. Fragalà,et al.  Synthesis, crystal structure, and second-order nonlinear optical properties of [N,N′-bis(1H-pyrrol-2-ylmethylene)-1,2-benzenediaminato]nickel(II) Schiff base complexes , 2004 .

[106]  S. Brasselet,et al.  Nonlinear Optical Properties of Redox-Active Mono-, Bi-, and Trimetallic σ-Acetylide Complexes Connected through a Phenyl Ring in the Cp*(dppe)Fe Series. An Example of Electro-switchable NLO Response , 2000 .

[107]  S. Bella Second-order nonlinear optical properties of transition metal complexes , 2001 .

[108]  J. Zyss,et al.  Synthesis, photophysical and nonlinear optical properties of macromolecular architectures featuring octupolar tris(bipyridine) ruthenium(II) moieties: evidence for a supramolecular self-ordering in a dentritic structure. , 2003, Journal of the American Chemical Society.

[109]  T. Takada,et al.  Molecular hyperpolarizability components βzzz and βzxx under directional extensions of π conjugation: missing-orbital analysis and simplified sum-over-states calculations , 1997 .

[110]  K. Clays,et al.  Quadratic Nonlinear Optical Properties of Correlated Chromophores: Cyclic 6,6'-Dinitro-1,1'-Binaphthyl-2,2'-Ethers , 1997 .

[111]  E. M. García-Frutos,et al.  Novel Push−Pull Phthalocyanines as Targets for Second-Order Nonlinear Applications , 2003 .

[112]  Yinglin Song,et al.  Correlations between molecular structures and third-order non-linear optical functions of heterothiometallic clusters: A comparative study , 2007 .

[113]  Pascal G. Lacroix,et al.  Synthesis and second-order nonlinear optical properties of new copper(II), nickel(II), and zinc(II) Schiff-base complexes. Toward a role of inorganic chromophores for second harmonic generation , 1996 .

[114]  P. Murrill HALIDES AND PERHALIDES OF THE PICOLINES. , 1899 .

[115]  J. Zyss,et al.  Redox-switchable second-order molecular polarizabilities with electron-rich iron σ-aryl acetylides , 2002 .

[116]  M. Samoć,et al.  Organometallic Complexes for Nonlinear Optics. 24. Reversible Electrochemical Switching of Nonlinear Absorption , 2001 .

[117]  T. Roisnel,et al.  A new class of bipyrimidine-based octupolar chromophores: synthesis, fluorescent and quadratic nonlinear optical properties , 2009 .

[118]  B. Brunschwig,et al.  Extended dipolar nonlinear optical chromophores based on trans-bis[1,2-phenylenebis(dimethylarsine)]chlororuthenium(II) centers. , 2006, Inorganic chemistry.

[119]  E. Barbu,et al.  Nondipolar Structures With Threefold Symmetry For Nonlinear Optics , 1997 .

[120]  Inge Asselberghs,et al.  Redox-switching of nonlinear optical behavior in Langmuir-Blodgett thin films containing a ruthenium(II) ammine complex. , 2008, Journal of the American Chemical Society.

[121]  J. Zyss,et al.  Supramolecular Octupolar Self‐Ordering Towards Nonlinear Optics , 2001 .

[122]  J. Zyss,et al.  Second-harmonic generation from non-dipolar non-centrosymmetric aromatic charge-transfer molecules , 1990 .

[123]  P. Günter,et al.  Elongated push–pull diphenylpolyenes for nonlinear optics: molecular engineering of quadratic and cubic optical nonlinearities via tuning of intramolecular charge transfer , 1999 .

[124]  R. Wortmann,et al.  Organic Materials for Second-Order Non-Linear Optics , 1999 .

[125]  J. Hupp,et al.  Probing the symmetry of the nonlinear optic chromophore Ru(trans-4,4'- diethylaminostyryl-2,2'-bipyridine)32+: Insight from polarized hyper- Rayleigh scattering and electroabsorption (Stark) spectroscopy , 1999 .

[126]  David P. Shelton,et al.  POLARIZED HYPER-RAYLEIGH LIGHT SCATTERING MEASUREMENTS OF NONLINEAR OPTICAL CHROMOPHORES , 1996 .

[127]  Peter Krämer,et al.  Deviations from Kleinman symmetry of the second-order polarizability tensor in molecules with low-lying perpendicular electronic bands , 1993 .