System Identification Based on Dynamical Training for Recurrent Interval Type-2 Fuzzy Neural Network

This paper proposes a novel fuzzy modeling approach for identification of dynamic systems. A fuzzy model, recurrent interval type-2 fuzzy neural network RIT2FNN, is constructed by using a recurrent neural network which recurrent weights, mean and standard deviation of the membership functions are updated. The complete back propagation BP algorithm tuning equations used to tune the antecedent and consequent parameters for the interval type-2 fuzzy neural networks IT2FNNs are developed to handle the training data corrupted by noise or rule uncertainties for nonlinear system identification involving external disturbances. Only by using the current inputs and most recent outputs of the input layers, the system can be completely identified based on RIT2FNNs. In order to show that the interval IT2FNNs can handle the measurement uncertainties, training data are corrupted by white Gaussian noise with signal-to-noise ratio SNR 20 dB. Simulation results are obtained for the identification of nonlinear system, which yield more improved performance than those using recurrent type-1 fuzzy neural networks RT1FNNs.

[1]  Brian Caulfield,et al.  Analyzing the Behavior of Smartphone Service Users , 2013, Int. J. Ambient Comput. Intell..

[2]  Jerry M. Mendel,et al.  Computing derivatives in interval type-2 fuzzy logic systems , 2004, IEEE Transactions on Fuzzy Systems.

[3]  Jerry M. Mendel,et al.  Equalization of nonlinear time-varying channels using type-2 fuzzy adaptive filters , 2000, IEEE Trans. Fuzzy Syst..

[4]  Kumpati S. Narendra,et al.  Identification and control of dynamical systems using neural networks , 1990, IEEE Trans. Neural Networks.

[5]  Jordi Vitrià,et al.  Clustering in image space for place recognition and visual annotations for human-robot interaction , 2001, IEEE Trans. Syst. Man Cybern. Part B.

[6]  Oscar Montiel,et al.  Experimental study of intelligent controllers under uncertainty using type-1 and type-2 fuzzy logic , 2007, Inf. Sci..

[7]  K. Wu Fuzzy interval control of mobile robots , 1996 .

[8]  V. Stavroulaki,et al.  Opportunistic Networks , 2011, IEEE Vehicular Technology Magazine.

[9]  Javier Andrade Garda,et al.  Knowledge Management Systems Procedural Development , 2009, Encyclopedia of Artificial Intelligence.

[10]  Tsung-Chih Lin,et al.  Direct adaptive interval type-2 fuzzy control of multivariable nonlinear systems , 2009, Eng. Appl. Artif. Intell..

[11]  H. Hagras,et al.  Type-2 FLCs: A New Generation of Fuzzy Controllers , 2007, IEEE Computational Intelligence Magazine.

[12]  Chi-Hsu Wang,et al.  Dynamical optimal training for interval type-2 fuzzy neural network (T2FNN) , 2003, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[13]  Manolis A. Christodoulou,et al.  Adaptive control of unknown plants using dynamical neural networks , 1994, IEEE Trans. Syst. Man Cybern..

[14]  Juan Luis Castro,et al.  Fuzzy logic controllers are universal approximators , 1995, IEEE Trans. Syst. Man Cybern..

[15]  Carmel Houston-Price,et al.  How Experiences with Words Supply All the Tools in the Toddler’s Word-Learning Toolbox , 2013 .

[16]  Vijayan Sugumaran Organizational Efficiency through Intelligent Information Technologies , 2012 .

[17]  Kevin M. Passino,et al.  Stable adaptive control using fuzzy systems and neural networks , 1996, IEEE Trans. Fuzzy Syst..

[18]  V. Sugumaran The Inaugural Issue of the International Journal of Intelligent Information Technologies , 2005 .

[19]  Felix Jesús Villanueva,et al.  A Rule-Based Approach to Automatic Service Composition , 2012, Int. J. Ambient Comput. Intell..

[20]  Manuel Kolp,et al.  Engineering Software Systems with Social-Driven Templates , 2010 .

[21]  Bor-Sen Chen,et al.  H∞ tracking design of uncertain nonlinear SISO systems: adaptive fuzzy approach , 1996, IEEE Trans. Fuzzy Syst..

[22]  Vijayan Sugumaran Intelligent Information Technologies: Concepts, Methodologies, Tools and Applications , 2007 .

[23]  Arthur C. Graesser,et al.  Natural Language Understanding and Assessment , 2009, Encyclopedia of Artificial Intelligence.

[24]  Chris D. Nugent,et al.  Smart Home Research: Projects and Issues , 2009, Int. J. Ambient Comput. Intell..

[25]  Tsung-Chih Lin,et al.  Observer-based robust adaptive interval type-2 fuzzy tracking control of multivariable nonlinear systems , 2010, Eng. Appl. Artif. Intell..

[26]  Julie E. Kendall,et al.  Memes and Mutation: Societal Implications of Evolutionary Agents in Push Technologies , 2005, Int. J. Intell. Inf. Technol..

[27]  Mohamed Salah Hamdi,et al.  MASACAD: A Multi-Agent System for Academic Advising , 2006, Int. J. Intell. Inf. Technol..

[28]  Jose Santos,et al.  Online Remote Control of a Wireless Home Automation Network , 2009, Int. J. Ambient Comput. Intell..

[29]  RONALD R. YAGER,et al.  Fuzzy Subsets of Type Ii in Decisions , 1980, Cybern. Syst..

[30]  Vijay Kumar Mago,et al.  Cross-Disciplinary Applications of Artificial Intelligence and Pattern Recognition: Advancing Technologies , 2011 .

[31]  Matteo Cristani Ontologies and E-Learning: How to Teach a Classification , 2005 .

[32]  Oscar Castillo,et al.  A hybrid learning algorithm for a class of interval type-2 fuzzy neural networks , 2009, Inf. Sci..

[33]  Vijayan Sugumaran,et al.  Methodological Advancements in Intelligent Information Technologies: Evolutionary Trends , 2009 .

[34]  Carsten Felden,et al.  On Improving the Visibility of Hard-Measurable Process Performance , 2012, Int. J. Intell. Inf. Technol..

[35]  Jerry M. Mendel,et al.  Applications of Type-2 Fuzzy Logic Systems to Forecasting of Time-series , 1999, Inf. Sci..

[36]  Ricardo Martínez-Soto,et al.  Optimization of Interval Type-2 Fuzzy Logic Controllers for a Perturbed Autonomous Wheeled Mobile Robot Using Genetic Algorithms , 2009, Soft Computing for Hybrid Intelligent Systems.

[37]  Li-Xin Wang Stable adaptive fuzzy control of nonlinear systems , 1993, IEEE Trans. Fuzzy Syst..

[38]  Hani Hagras,et al.  A hierarchical type-2 fuzzy logic control architecture for autonomous mobile robots , 2004, IEEE Transactions on Fuzzy Systems.

[39]  Ric Jentzsch,et al.  A cooperative communicative intelligent agent model for e-commerce , 2003 .

[40]  Jerry M. Mendel,et al.  Interval type-2 fuzzy logic systems , 2000, Ninth IEEE International Conference on Fuzzy Systems. FUZZ- IEEE 2000 (Cat. No.00CH37063).

[41]  Zengqi Sun,et al.  Output tracking and regulation of nonlinear system based on Takagi-Sugeno fuzzy model , 2000, IEEE Trans. Syst. Man Cybern. Part B.

[42]  N. Nagaveni,et al.  Self Adaptive Particle Swarm Optimization for Efficient Virtual Machine Provisioning in Cloud , 2011, Int. J. Intell. Inf. Technol..

[43]  Hani Hagras Comments on "Dynamical Optimal Training for Interval Type-2 Fuzzy Neural Network (T2FNN) , 2006, IEEE Trans. Syst. Man Cybern. Part B.

[44]  Shouhong Wang,et al.  A Model for Monitoring and Enforcing Online Auction Ethics , 2005, Int. J. Intell. Inf. Technol..

[45]  Alejandro Pazos Sierra,et al.  Encyclopedia of Artificial Intelligence , 2008 .