Convexity in partial cubes: The hull number

We prove that the combinatorial optimization problem of determining the hull number of a partial cube is NP-complete. This makes partial cubes the minimal graph class for which NP-completeness of this problem is known and improves earlier results in the literature.On the other hand we provide a polynomial-time algorithm to determine the hull number of planar partial cube quadrangulations.Instances of the hull number problem for partial cubes described include poset dimension and hitting sets for interiors of curves in the plane.To obtain the above results, we investigate convexity in partial cubes and obtain a new characterization of these graphs in terms of their lattice of convex subgraphs. This refines a theorem of Handa. Furthermore we provide a topological representation theorem for planar partial cubes, generalizing a result of Fukuda and Handa about tope graphs of rank 3 oriented matroids.

[1]  Raul Cordovil,et al.  Sur les Matroïdes Orientés de Rang 3 et les Arrangements de Pseudodroites dans le Plan Projectif Réel , 1982, Eur. J. Comb..

[2]  R. P. Kurshan,et al.  On the addressing problem of loop switching , 1972 .

[3]  Peter Winkler,et al.  Isometric embedding in products of complete graphs , 1984, Discret. Appl. Math..

[4]  José Cáceres,et al.  On the geodetic and the hull numbers in strong product graphs , 2009, Comput. Math. Appl..

[5]  Júlio Araújo,et al.  Hull number: P5-free graphs and reduction rules , 2016, Discret. Appl. Math..

[6]  Martin G. Everett,et al.  The hull number of a graph , 1985, Discret. Math..

[7]  David Eppstein,et al.  Isometric Diamond Subgraphs , 2008, GD.

[8]  Frank Harary,et al.  On the Hall Number of a Graph , 2000, Ars Comb..

[9]  Júlio Araújo,et al.  Hull number: P5-free graphs and reduction rules , 2013, Electron. Notes Discret. Math..

[10]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[11]  E. Helly,et al.  Über Systeme von abgeschlossenen Mengen mit gemeinschaftlichen Punkten , 1930 .

[12]  Hans-Jürgen Bandelt,et al.  Graphs with intrinsic s3 convexities , 1989, J. Graph Theory.

[13]  D. Djoković Distance-preserving subgraphs of hypercubes , 1973 .

[14]  Bernard Monjardet,et al.  A use for frequently rediscovering a concept , 1985 .

[15]  David Eppstein,et al.  Media theory - interdisciplinary applied mathematics , 2010 .

[16]  Gary Chartrand,et al.  Convex sets in graphs , 1999 .

[17]  Lhouari Nourine,et al.  Polynomial Time Algorithms for Computing a Minimum Hull Set in Distance-Hereditary and Chordal Graphs , 2016, SIAM J. Discret. Math..

[18]  Sergei Ovchinnikov,et al.  Media theory , 2002, Discret. Appl. Math..

[19]  Tao Jiang,et al.  On the Steiner, geodetic and hull numbers of graphs , 2005, Discret. Math..

[20]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[21]  W. Trotter,et al.  Combinatorics and Partially Ordered Sets: Dimension Theory , 1992 .

[22]  Jayme Luiz Szwarcfiter,et al.  On the Hull Number of Triangle-Free Graphs , 2010, SIAM J. Discret. Math..

[23]  W. Marsden I and J , 2012 .

[24]  Lhouari Nourine,et al.  Polynomial Time Algorithms for Computing a Minimum Hull Set in Distance-Hereditary and Chordal Graphs , 2013, SIAM J. Discret. Math..

[25]  Frédéric Giroire,et al.  On the hull number of some graph classes , 2011, Electron. Notes Discret. Math..

[26]  G. Ziegler Lectures on Polytopes , 1994 .

[27]  B. Sturmfels Oriented Matroids , 1993 .

[28]  RAUL CORDOVIL FLIPPING IN ACYCLIC AND STRONGLY CONNECTED GRAPHS , 2005 .

[29]  Sandi Klavzar,et al.  Convex excess in partial cubes , 2012, J. Graph Theory.

[30]  Komei Fukuda,et al.  Antipodal graphs and oriented matroids , 1993, Discret. Math..

[31]  Jayme Luiz Szwarcfiter,et al.  On the computation of the hull number of a graph , 2009, Discret. Math..

[32]  Dieter Rautenbach,et al.  Geodetic Number versus Hull Number in P3-Convexity , 2013, SIAM J. Discret. Math..

[33]  L. Lovász,et al.  Polynomial Algorithms for Perfect Graphs , 1984 .

[34]  Stefan Felsner,et al.  ULD-Lattices and Δ-Bonds , 2008, Combinatorics, Probability and Computing.

[35]  Frank Harary,et al.  Graph Theory , 2016 .

[36]  Keiichi Handa,et al.  Topes of Oriented Matroids and Related Structures , 1993 .

[37]  M. Yannakakis The Complexity of the Partial Order Dimension Problem , 1982 .

[38]  Robert J. Fowler,et al.  Optimal Packing and Covering in the Plane are NP-Complete , 1981, Inf. Process. Lett..

[39]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[40]  Richard P. Stanley,et al.  Two poset polytopes , 1986, Discret. Comput. Geom..

[41]  Russell Impagliazzo,et al.  On the Complexity of k-SAT , 2001, J. Comput. Syst. Sci..

[42]  M. V. Semyonova,et al.  Lattices with unique irreducible decompositions , 2000 .

[43]  Jim Lawrence,et al.  Oriented matroids , 1978, J. Comb. Theory B.