Masses and Ages for 230,000 LAMOST Giants, via Their Carbon and Nitrogen Abundances

We measure carbon and nitrogen abundances to a precision of dex for 450,000 giant stars from their low-resolution ( ) LAMOST DR2 survey spectra. We use these and measurements, together with empirical relations based on the APOKASC sample, to infer stellar masses and implied ages for 230,000 of these objects to 0.08 dex and 0.2 dex respectively. We use The Cannon, a data-driven approach to spectral modeling, to construct a predictive model for LAMOST spectra. Our reference set comprises 8125 stars observed in common between the APOGEE and LAMOST surveys, taking seven APOGEE DR12 labels (parameters) as ground truth: , , , , , , and . We add seven colors to the Cannon model, based on the g, r, i, J, H, K, W1, W2 magnitudes from APASS, 2MASS, and WISE, which improves our constraints on and by up to 20% and on by up to 70%. Cross-validation of the model demonstrates that, for high- objects, our inferred labels agree with the APOGEE values to within 50 K in temperature, 0.04 mag in , and dex in , , , , and . We apply the model to 450,000 giants in LAMOST DR2 that have not been observed by APOGEE. This demonstrates that precise individual abundances can be measured from low-resolution spectra and represents the largest catalog to date of homogeneous stellar , , masses, and ages. As a result, we greatly increase the number and sky coverage of stars with mass and age estimates.

[1]  H. Rix,et al.  The Cannon 2: A data-driven model of stellar spectra for detailed chemical abundance analyses , 2016, 1603.03040.

[2]  H. Rix,et al.  ACCELERATED FITTING OF STELLAR SPECTRA , 2016, 1602.06947.

[3]  H. Rix,et al.  Label Transfer from APOGEE to LAMOST: Precise Stellar Parameters for 450,000 LAMOST Giants , 2016, 1602.00303.

[4]  H. Rix,et al.  CHEMICAL TAGGING CAN WORK: IDENTIFICATION OF STELLAR PHASE-SPACE STRUCTURES PURELY BY CHEMICAL-ABUNDANCE SIMILARITY , 2016, 1601.05413.

[5]  D. A. García-Hernández,et al.  Red giant masses and ages derived from carbon and nitrogen abundances , 2015, 1511.08203.

[6]  H. Rix,et al.  SPECTROSCOPIC DETERMINATION OF MASSES (AND IMPLIED AGES) FOR RED GIANTS , 2015, 1511.08204.

[7]  Nicholas Troup,et al.  ASPCAP: THE APOGEE STELLAR PARAMETER AND CHEMICAL ABUNDANCES PIPELINE , 2015, 1510.07635.

[8]  Liverpool John Moores University,et al.  Post first dredge-up [C/N] ratio as age indicator. Theoretical calibration , 2015, 1509.06904.

[9]  H. Rix,et al.  THE STELLAR POPULATION STRUCTURE OF THE GALACTIC DISK , 2015, 1509.05796.

[10]  Anna Y. Q. Ho,et al.  THE CANNON: A DATA-DRIVEN APPROACH TO STELLAR LABEL DETERMINATION , 2015, 1501.07604.

[11]  Annie C. Robin,et al.  ABUNDANCES, STELLAR PARAMETERS, AND SPECTRA FROM THE SDSS-III/APOGEE SURVEY , 2015, 1501.04110.

[12]  Hilo,et al.  THE ELEVENTH AND TWELFTH DATA RELEASES OF THE SLOAN DIGITAL SKY SURVEY: FINAL DATA FROM SDSS-III , 2015, 1501.00963.

[13]  Chao Liu,et al.  THE K GIANT STARS FROM THE LAMOST SURVEY DATA. I. IDENTIFICATION, METALLICITY, AND DISTANCE , 2014, The Astrophysical Journal.

[14]  T. Beers,et al.  TESTING THE ASTEROSEISMIC MASS SCALE USING METAL-POOR STARS CHARACTERIZED WITH APOGEE AND KEPLER , 2014, 1403.1872.

[15]  U. Munari,et al.  The APASS all-sky, multi-epoch BVgri photometric survey , 2014 .

[16]  M. Lehnert,et al.  The age structure of stellar populations in the solar vicinity Clues of a two-phase formation history of the Milky Way disk , 2013, 1305.4663.

[17]  D. Stello,et al.  ASTEROSEISMIC CLASSIFICATION OF STELLAR POPULATIONS AMONG 13,000 RED GIANTS OBSERVED BY KEPLER , 2013, 1302.0858.

[18]  Hans-Walter Rix,et al.  The Milky Way’s stellar disk , 2013, 1301.3168.

[19]  Ali Luo,et al.  Comparison of different interpolation algorithm in feature-based template matching for stellar parameters analysis , 2012, Other Conferences.

[20]  William F. Welsh,et al.  KEPLER MISSION STELLAR AND INSTRUMENT NOISE PROPERTIES , 2011, 1107.5207.

[21]  Harinder P. Singh,et al.  Coudé-feed stellar spectral library – atmospheric parameters , 2010, 1009.1491.

[22]  Martin G. Cohen,et al.  THE WIDE-FIELD INFRARED SURVEY EXPLORER (WISE): MISSION DESCRIPTION AND INITIAL ON-ORBIT PERFORMANCE , 2010, 1008.0031.

[23]  Howard Isaacson,et al.  Kepler Planet-Detection Mission: Introduction and First Results , 2010, Science.

[24]  T. Owen,et al.  KEPLER MISSION DESIGN, REALIZED PHOTOMETRIC PERFORMANCE, AND EARLY SCIENCE , 2010, 1001.0268.

[25]  J. De Ridder,et al.  SOLAR-LIKE OSCILLATIONS IN LOW-LUMINOSITY RED GIANTS: FIRST RESULTS FROM KEPLER , 2010, 1001.0229.

[26]  B. Skiff,et al.  VizieR Online Data Catalog , 2009 .

[27]  Yue Wu,et al.  ULySS: a full spectrum fitting package , 2009, 0903.2979.

[28]  S. Martell,et al.  An Improved Bandstrength Index for the CH G Band of Globular Cluster Giants , 2008, 0806.0012.

[29]  Robert Barkhouser,et al.  The Apache Point Observatory Galactic Evolution Experiment (APOGEE) , 2007, Astronomical Telescopes + Instrumentation.

[30]  David R. Soderblom,et al.  The Ages of Stars , 2007, 1003.6074.

[31]  W. M. Wood-Vasey,et al.  SDSS-III: MASSIVE SPECTROSCOPIC SURVEYS OF THE DISTANT UNIVERSE, THE MILKY WAY, AND EXTRA-SOLAR PLANETARY SYSTEMS , 2011, 1101.1529.

[32]  CEA-Saclay,et al.  New release of the ELODIE library: Version 3.1 , 2007, astro-ph/0703658.

[33]  Walter A. Siegmund,et al.  # 2006. The American Astronomical Society. All rights reserved. Printed in U.S.A. THE 2.5 m TELESCOPE OF THE SLOAN DIGITAL SKY SURVEY , 2005 .

[34]  M. Skrutskie,et al.  The Two Micron All Sky Survey (2MASS) , 2006 .

[35]  B. Yanny,et al.  A Spectroscopic Study of the Ancient Milky Way: F- and G-Type Stars in the Third Data Release of the Sloan Digital Sky Survey , 2005, astro-ph/0509812.

[36]  P. Prugniel,et al.  A database of high and medium-resolution stellar spectra ?;?? , 2001, astro-ph/0101378.

[37]  R. Kurucz Model atmospheres for G, F, A, B, and O stars , 1979 .

[38]  V. Porubčan,et al.  Contributions of the Astronomical Observatory Skalnate Pleso, Volume 25 , 1995 .