(Omega, Xi)-Logic: On the Algebraic Extension of Coalgebraic Specifications

We present an extension of standard coalgebraic specification techniques for state based systems which allows us to integrate constants and n-ary operations in a smooth way and, moreover, leads to a simplification of the coalgebraic structure of the models of a specification. The framework of (Ω;,Ξ)-logic can be considered as the result of a translation of concepts of observational logic (cf. [9]) into the coalgebraic world. As a particular outcome we obtain the notion of an (Ω, Ξ)-structure and a sound and complete proof system for (first-order) observational properties of specifications.

[1]  Jan J. M. M. Rutten,et al.  Initial Algebra and Final Coalgebra Semantics for Concurrency , 1993, REX School/Symposium.

[2]  Razvan Diaconescu,et al.  Behavioural Coherence in Object-Oriented Algebraic Specification , 2000, J. Univers. Comput. Sci..

[3]  H. Keisler Model theory for infinitary logic , 1971 .

[4]  Grant Malcolm,et al.  Behavioural Equivalence, Bisimulation, and Minimal Realisation , 1995, COMPASS/ADT.

[5]  B. Jacobs,et al.  A tutorial on (co)algebras and (co)induction , 1997 .

[6]  Joseph A. Goguen,et al.  A hidden agenda , 2000, Theor. Comput. Sci..

[7]  Yuri Leonidovich Ershov,et al.  The Bounded-Complete Hull of an Alpha-Space , 1997, Theor. Comput. Sci..

[8]  Hans-Jörg Schek,et al.  Object Orientation with Parallelism and Persistence , 1996 .

[9]  Jan J. M. M. Rutten,et al.  Universal coalgebra: a theory of systems , 2000, Theor. Comput. Sci..

[10]  Martin Wirsing,et al.  Behavioural and Abstractor Specifications , 1995, Sci. Comput. Program..

[11]  Michel Bidoit,et al.  Proving Behavioural Theorems with Standard First-Order Logic , 1994, ALP.

[12]  Michel Bidoit,et al.  Behavioural Theories and the Proof of Behavioural Properties , 1996, Theor. Comput. Sci..

[13]  Peter Padawitz,et al.  Swinging Data Types: Syntax, Semantics, and Theory , 1995, COMPASS/ADT.

[14]  Michel Bidoit,et al.  Modular correctness proofs of behavioural implementations , 1998, Acta Informatica.

[15]  Horst Reichel,et al.  Initial Computability, Algebraic Specifications, and Partial Algebras , 1987 .

[16]  Bart Jacobs,et al.  Mongruences and Cofree Coalgebras , 1995, AMAST.

[17]  Grigore Rosu,et al.  Hidden Congruent Deduction , 1998, FTP.

[18]  H. Peter Gumm Equational and implicational classes of coalgebras , 2001, Theor. Comput. Sci..

[19]  Bart Jacobs,et al.  Objects and Classes, Co-Algebraically , 1995, Object Orientation with Parallelism and Persistence.

[20]  Alexander Kurz A Co-Variety-Theorem for Modal Logic , 1998, Advances in Modal Logic.

[21]  Michel Bidoit,et al.  Observational Logic , 1998, AMAST.

[22]  Horst Reichel,et al.  An approach to object semantics based on terminal co-algebras , 1995, Mathematical Structures in Computer Science.