Neuronal Dynamics Regulating Brain and Behavioral State Transitions

[1]  F. Kermen,et al.  Chronic unpredictable stress induces anxiety-like behaviors in young zebrafish , 2020, Scientific Reports.

[2]  Paul Tchenio,et al.  In vivo large-scale analysis of Drosophila neuronal calcium traces by automated tracking of single somata , 2020, Scientific Reports.

[3]  H. Baier,et al.  A calibrated optogenetic toolbox of stable zebrafish opsin lines , 2020, bioRxiv.

[4]  G. Stuber,et al.  Transcriptional and Spatial Resolution of Cell Types in the Mammalian Habenula , 2019, Neuron.

[5]  G. Stuber,et al.  Heterogeneous Habenular Neuronal Ensembles during Selection of Defensive Behaviors , 2019, bioRxiv.

[6]  Pengcheng Zhou,et al.  CaImAn an open source tool for scalable calcium imaging data analysis , 2019, eLife.

[7]  John Huguenard,et al.  Anatomically Defined and Functionally Distinct Dorsal Raphe Serotonin Sub-systems , 2018, Cell.

[8]  William E. Allen,et al.  Three-dimensional intact-tissue sequencing of single-cell transcriptional states , 2018, Science.

[9]  Aviv Regev,et al.  Comprehensive Identification and Spatial Mapping of Habenular Neuronal Types Using Single-Cell RNA-Seq , 2018, Current Biology.

[10]  Johannes Stegmaier,et al.  Third-generation in situ hybridization chain reaction: multiplexed, quantitative, sensitive, versatile, robust , 2018, Development.

[11]  I. Lucki,et al.  A role for corticotropin-releasing factor signaling in the lateral habenula and its modulation by early-life stress , 2018, Science Signaling.

[12]  Fang Wang,et al.  Dorsal raphe projection inhibits the excitatory inputs on lateral habenula and alleviates depressive behaviors in rats , 2018, Brain Structure and Function.

[13]  Hailan Hu,et al.  Ketamine blocks bursting in the lateral habenula to rapidly relieve depression , 2018, Nature.

[14]  Hailan Hu,et al.  Astroglial Kir4.1 in the lateral habenula drives neuronal bursts in depression , 2018, Nature.

[15]  Liam Paninski,et al.  Efficient and accurate extraction of in vivo calcium signals from microendoscopic video data , 2016, eLife.

[16]  William E. Allen,et al.  Ancestral Circuits for the Coordinated Modulation of Brain State , 2017, Cell.

[17]  Surya Ganguli,et al.  Identification of cellular-activity dynamics across large tissue volumes in the mammalian brain , 2017, bioRxiv.

[18]  Zeguan Wang,et al.  Rapid whole brain imaging of neural activity in freely behaving larval zebrafish (Danio rerio) , 2017, bioRxiv.

[19]  Haim Sompolinsky,et al.  From Whole-Brain Data to Functional Circuit Models: The Zebrafish Optomotor Response , 2016, Cell.

[20]  Vijay Mohan K. Namboodiri,et al.  The habenula , 2016, Current Biology.

[21]  Bo Li,et al.  A basal ganglia circuit for evaluating action outcomes , 2016, Nature.

[22]  Samuel D. Dolzani,et al.  Activation of a Habenulo–Raphe Circuit Is Critical for the Behavioral and Neurochemical Consequences of Uncontrollable Stress in the Male Rat , 2016, eNeuro.

[23]  M. Seligman,et al.  Learned helplessness at fifty: Insights from neuroscience. , 2016, Psychological review.

[24]  Stephen W. Wilson,et al.  Afferent Connectivity of the Zebrafish Habenulae , 2016, Front. Neural Circuits.

[25]  Christopher D. Harvey,et al.  Recurrent Network Models of Sequence Generation and Memory , 2016, Neuron.

[26]  R. Luján,et al.  Rescue of GABAB and GIRK function in the lateral habenula by protein phosphatase 2A inhibition ameliorates depression-like phenotypes in mice , 2016, Nature Medicine.

[27]  Russell S. Ray,et al.  Activity of Raphé Serotonergic Neurons Controls Emotional Behaviors. , 2015, Cell reports.

[28]  S. Ogawa,et al.  Neuronal connectivity between habenular glutamate‐kisspeptin1 co‐expressing neurons and the raphe 5‐HT system , 2015, Journal of neurochemistry.

[29]  James E. Fitzgerald,et al.  Whole-brain activity mapping onto a zebrafish brain atlas , 2015, Nature Methods.

[30]  Dayu Lin,et al.  Collateral Pathways from the Ventromedial Hypothalamus Mediate Defensive Behaviors , 2015, Neuron.

[31]  S. Higashijima,et al.  The Habenulo-Raphe Serotonergic Circuit Encodes an Aversive Expectation Value Essential for Adaptive Active Avoidance of Danger , 2014, Neuron.

[32]  Y. Isomura,et al.  Glial Dysfunction in the Mouse Habenula Causes Depressive-Like Behaviors and Sleep Disturbance , 2014, The Journal of Neuroscience.

[33]  Henry Pinkard,et al.  Advanced methods of microscope control using μManager software. , 2014, Journal of biological methods.

[34]  Aaron S. Andalman,et al.  Enhancing the performance of the light field microscope using wavefront coding. , 2014, Optics express.

[35]  Christophe D. Proulx,et al.  GABA/glutamate co-release controls habenula output and is modified by antidepressant treatment , 2014, Science.

[36]  Christophe D. Proulx,et al.  Reward processing by the lateral habenula in normal and depressive behaviors , 2014, Nature Neuroscience.

[37]  Philipp J. Keller,et al.  Light-sheet functional imaging in fictively behaving zebrafish , 2014, Nature Methods.

[38]  Emmanuelle Gouillart,et al.  scikit-image: image processing in Python , 2014, PeerJ.

[39]  David J. Anderson,et al.  Control of Stress-Induced Persistent Anxiety by an Extra-Amygdala Septohypothalamic Circuit , 2014, Cell.

[40]  E. Boyden,et al.  Simultaneous whole-animal 3D-imaging of neuronal activity using light-field microscopy , 2014, Nature Methods.

[41]  Aaron S. Andalman,et al.  Wave optics theory and 3-D deconvolution for the light field microscope. , 2013, Optics express.

[42]  R. Malinow,et al.  βCaMKII in Lateral Habenula Mediates Core Symptoms of Depression , 2013, Science.

[43]  Aaron S. Andalman,et al.  Dopamine neurons modulate neural encoding and expression of depression-related behaviour , 2012, Nature.

[44]  K. Deisseroth,et al.  A prefrontal cortex–brainstem neuronal projection that controls response to behavioural challenge , 2012, Nature.

[45]  H. Burgess,et al.  The Dorsal Raphe Modulates Sensory Responsiveness during Arousal in Zebrafish , 2012, The Journal of Neuroscience.

[46]  Alice M Stamatakis,et al.  Activation of lateral habenula inputs to the ventral midbrain promotes behavioral avoidance , 2012, Nature Neuroscience.

[47]  Cori Bargmann Beyond the connectome: How neuromodulators shape neural circuits , 2012, BioEssays : news and reviews in molecular, cellular and developmental biology.

[48]  Drew N. Robson,et al.  Brain-wide neuronal dynamics during motor adaptation in zebrafish , 2012, Nature.

[49]  Christophe D. Proulx,et al.  Input to the Lateral Habenula from the Basal Ganglia Is Excitatory, Aversive, and Suppressed by Serotonin , 2012, Neuron.

[50]  R. Portugues,et al.  Ontogeny of classical and operant learning behaviors in zebrafish. , 2012, Learning & memory.

[51]  H. Okamoto,et al.  Genetic dissection of the zebrafish habenula, a possible switching board for selection of behavioral strategy to cope with fear and anxiety , 2012, Developmental neurobiology.

[52]  S. Maier,et al.  Uncontrollable, But Not Controllable, Stress Desensitizes 5-HT1A Receptors in the Dorsal Raphe Nucleus , 2011, The Journal of Neuroscience.

[53]  C. Lillesaar The serotonergic system in fish , 2011, Journal of Chemical Neuroanatomy.

[54]  Oleg V. Michailovich,et al.  Regularized Richardson-Lucy algorithm for reconstruction of Poissonian medical images , 2011, 2011 IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[55]  Gaël Varoquaux,et al.  The NumPy Array: A Structure for Efficient Numerical Computation , 2011, Computing in Science & Engineering.

[56]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[57]  A. Sartorius,et al.  Pharmacological inhibition of the lateral habenula improves depressive-like behavior in an animal model of treatment resistant depression , 2011, Behavioural Brain Research.

[58]  Christophe D. Proulx,et al.  Synaptic potentiation onto habenula neurons in learned helplessness model of depression , 2010, Nature.

[59]  Wes McKinney,et al.  pandas: a Foundational Python Library for Data Analysis and Statistics , 2011 .

[60]  Cathleen Teh,et al.  The Habenula Prevents Helpless Behavior in Larval Zebrafish , 2010, Current Biology.

[61]  S. Higashijima,et al.  The habenula is crucial for experience-dependent modification of fear responses in zebrafish , 2010, Nature Neuroscience.

[62]  S. Maier,et al.  Role of the medial prefrontal cortex in coping and resilience , 2010, Brain Research.

[63]  S. Hyman,et al.  Animal models of neuropsychiatric disorders , 2010, Nature Neuroscience.

[64]  O. Hikosaka The habenula: from stress evasion to value-based decision-making , 2010, Nature Reviews Neuroscience.

[65]  John Wright,et al.  RASL: Robust alignment by sparse and low-rank decomposition for linearly correlated images , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[66]  S. Maier,et al.  Behavioral control over shock blocks behavioral and neurochemical effects of later social defeat , 2010, Neuroscience.

[67]  D. Segal Diagnostic and Statistical Manual of Mental Disorders (DSM-IV-TR) , 2010 .

[68]  Hitoshi Okamoto,et al.  Identification of the Zebrafish Ventral Habenula As a Homolog of the Mammalian Lateral Habenula , 2010, The Journal of Neuroscience.

[69]  L. Abbott,et al.  Stimulus-dependent suppression of chaos in recurrent neural networks. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[70]  Herwig Baier,et al.  Optical control of zebrafish behavior with halorhodopsin , 2009, Proceedings of the National Academy of Sciences.

[71]  L. F. Abbott,et al.  Generating Coherent Patterns of Activity from Chaotic Neural Networks , 2009, Neuron.

[72]  Stephen W. Wilson,et al.  The habenular nuclei: a conserved asymmetric relay station in the vertebrate brain , 2008, Philosophical Transactions of the Royal Society B: Biological Sciences.

[73]  Hua Zhao,et al.  Lateral habenula lesions improve the behavioral response in depressed rats via increasing the serotonin level in dorsal raphe nucleus , 2008, Behavioural Brain Research.

[74]  O. Hikosaka,et al.  Lateral habenula as a source of negative reward signals in dopamine neurons , 2007, Nature.

[75]  John D. Hunter,et al.  Matplotlib: A 2D Graphics Environment , 2007, Computing in Science & Engineering.

[76]  Brian E. Granger,et al.  IPython: A System for Interactive Scientific Computing , 2007, Computing in Science & Engineering.

[77]  Travis E. Oliphant,et al.  Python for Scientific Computing , 2007, Computing in Science & Engineering.

[78]  Marc Levoy,et al.  Light field microscopy , 2006, ACM Trans. Graph..

[79]  J. Cryan,et al.  The tail suspension test as a model for assessing antidepressant activity: Review of pharmacological and genetic studies in mice , 2005, Neuroscience & Biobehavioral Reviews.

[80]  P. Willner Chronic Mild Stress (CMS) Revisited: Consistency and Behavioural-Neurobiological Concordance in the Effects of CMS , 2005, Neuropsychobiology.

[81]  陳龍弘,et al.  情緒調節(mood regulation)的概念與策略 , 2005 .

[82]  Richard S. Sutton,et al.  Reinforcement Learning: An Introduction , 1998, IEEE Trans. Neural Networks.

[83]  F. Gonzalez-Lima,et al.  Brain differences in newborn rats predisposed to helpless and depressive behavior , 2004, Brain Research.

[84]  B. Thierry,et al.  The tail suspension test: A new method for screening antidepressants in mice , 2004, Psychopharmacology.

[85]  F. Gonzalez-Lima,et al.  Brain systems underlying susceptibility to helplessness and depression. , 2003, Behavioral and cognitive neuroscience reviews.

[86]  Torsten Rohlfing,et al.  Nonrigid image registration in shared-memory multiprocessor environments with application to brains, breasts, and bees , 2003, IEEE Transactions on Information Technology in Biomedicine.

[87]  F. Gonzalez-Lima,et al.  Opposite metabolic changes in the habenula and ventral tegmental area of a genetic model of helpless behavior , 2003, Brain Research.

[88]  M. Roche,et al.  Circuitry Underlying Regulation of the Serotonergic System by Swim Stress , 2003, The Journal of Neuroscience.

[89]  S. Maier,et al.  Electrolytic lesions and pharmacological inhibition of the dorsal raphe nucleus prevent stressor potentiation of morphine conditioned place preference in rats , 2003, Psychopharmacology.

[90]  D. Schulz,et al.  Prolonged effect of an anesthetic dose of ketamine on behavioral despair , 2002, Pharmacology Biochemistry and Behavior.

[91]  Eric Jones,et al.  SciPy: Open Source Scientific Tools for Python , 2001 .

[92]  Richard Bandler,et al.  Central circuits mediating patterned autonomic activity during active vs. passive emotional coping , 2000, Brain Research Bulletin.

[93]  S. D. de Boer,et al.  Coping styles in animals: current status in behavior and stress-physiology , 1999, Neuroscience & Biobehavioral Reviews.

[94]  S. Maier,et al.  Activation of serotonin-immunoreactive cells in the dorsal raphe nucleus in rats exposed to an uncontrollable stressor , 1999, Brain Research.

[95]  S. Maier,et al.  Exposure to inescapable but not escapable shock increases extracellular levels of 5-HT in the dorsal raphe nucleus of the rat , 1998, Brain Research.

[96]  Sommers,et al.  Chaos in random neural networks. , 1988, Physical review letters.

[97]  J. Mazziotta,et al.  Cerebral correlates of depressed behavior in rats, visualized using 14C- 2-deoxyglucose autoradiography , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[98]  A. Beck,et al.  Hopelessness and eventual suicide: a 10-year prospective study of patients hospitalized with suicidal ideation. , 1985, The American journal of psychiatry.

[99]  M. Fanselow,et al.  Conditional and unconditional components of post-shock freezing , 1980, The Pavlovian journal of biological science.

[100]  Warren C. Stern,et al.  Effects of electrical stimulation of the lateral habenula on single-unit activity of raphe neurons , 1979, Experimental Neurology.

[101]  R. Porsolt,et al.  Behavioural despair in rats: a new model sensitive to antidepressant treatments. , 1978, European journal of pharmacology.