The influence of a subduction component on magmatism in the Okinawa Trough: Evidence from thorium and related trace element ratios

[1]  J. Blusztajn,et al.  Tracing subducted sediment inputs to the Ryukyu arc-Okinawa Trough system: Evidence from thallium isotopes , 2017 .

[2]  Yong‐Fei Zheng,et al.  Continental basalts record the crust-mantle interaction in oceanic subduction channel: A geochemical case study from eastern China , 2017 .

[3]  S. Nielsen,et al.  Geochemical evidence for mélange melting in global arcs , 2017, Science Advances.

[4]  S. Zhai,et al.  Geochemical features of trace and rare earth elements of pumice in middle Okinawa Trough and its indication of magmatic process , 2017, Journal of Ocean University of China.

[5]  S. Zhai,et al.  Geochemical and Sr-Nd-Pb-Li isotopic characteristics of volcanic rocks from the Okinawa Trough: Implications for the influence of subduction components and the contamination of crustal materials , 2016 .

[6]  Jing‐Yi Lin,et al.  Transition of the Taiwan-Ryukyu collision-subduction process as revealed by ocean-bottom seismometer observations , 2016 .

[7]  C. You,et al.  The influence of Ryukyu subduction on magma genesis in the Northern Taiwan Volcanic Zone and Middle Okinawa Trough - Evidence from boron isotopes , 2016 .

[8]  L. Tian,et al.  Influence of subduction components on magma composition in back‐arc basins: a comparison between the Mariana and Okinawa troughs , 2016 .

[9]  S. Zhai,et al.  Sr–Nd–Pb isotopic geochemistry of phenocrysts in pumice from the central Okinawa Trough , 2016 .

[10]  S. Zhai,et al.  Helium isotopes in volcanic rocks from the Okinawa Trough—impact of volatile recycling and crustal contamination , 2016 .

[11]  San-zhong Li,et al.  The geological nature and geodynamics of the Okinawa Trough, Western Pacific , 2016 .

[12]  Yong‐Fei Zheng,et al.  The transport of water in subduction zones , 2016, Science China Earth Sciences.

[13]  Guo Kun,et al.  Determination and Tectonic Significance of Volcanic Rock Series in the Okinawa Trough , 2016 .

[14]  F. Chu,et al.  Geochemical constraints on the contribution of Louisville seamount materials to magmagenesis in the Lau back-arc basin, SW Pacific , 2015 .

[15]  W. Leng,et al.  Geodynamic modeling of thermal structure of subduction zones , 2015, Science China Earth Sciences.

[16]  Aaron J. Martin,et al.  Extrusion vs. duplexing models of Himalayan mountain building 3: duplexing dominates from the Oligocene to Present , 2015 .

[17]  R. Ernst,et al.  Intraplate geodynamics and magmatism in the evolution of the Central Asian Orogenic Belt , 2014 .

[18]  Xuefa Shi,et al.  Petrologic perspectives on tectonic evolution of a nascent basin (Okinawa Trough) behind Ryukyu Arc: A review , 2014, Acta Oceanologica Sinica.

[19]  Shi Xue-fa,et al.  Magmatism of Typical Marginal Basins (or Back-Arc Basins) in the West Pacific , 2013 .

[20]  R. Stern,et al.  Origin of Back‐Arc Basin Magmas: Trace Element and Isotope Perspectives , 2013 .

[21]  M. Scambelluri,et al.  Boron isotope evidence for shallow fluid transfer across subduction zones by serpentinized mantle , 2012 .

[22]  Kuo‐Lung Wang,et al.  The southwestern edge of the Ryukyu subduction zone: A high Q mantle wedge , 2012 .

[23]  D. Hilton,et al.  Major and trace element and Sr‐Nd isotope signatures of the northern Lau Basin lavas: Implications for the composition and dynamics of the back‐arc basin mantle , 2011 .

[24]  G. Abers,et al.  Subduction factory: 4. Depth-dependent flux of H2O from subducting slabs worldwide , 2011 .

[25]  J. Kimura,et al.  Geochemistry of late Cenozoic lavas on Kunashir Island, Kurile Arc , 2010 .

[26]  K. Fischer,et al.  he global range of subduction zone thermal models , 2010 .

[27]  Takahiro Yamamoto,et al.  Synchronous Japan Sea opening Miocene fore-arc volcanism in the Abukuma Mountains, NE Japan : An advancing hot asthenosphere flow versus Pacific slab melting , 2009 .

[28]  C. Langmuir,et al.  Origins of chemical diversity of back‐arc basin basalts: A segment‐scale study of the Eastern Lau Spreading Center , 2009 .

[29]  C. Langmuir,et al.  Mantle source variations beneath the Eastern Lau Spreading Center and the nature of subduction components in the Lau basin–Tonga arc system , 2009 .

[30]  D. Hilton,et al.  Major and trace element and Sr-Nd isotope signatures of lavas from the Central Lau Basin: Implications for the nature and influence of subduction components in the back-arc mantle , 2008 .

[31]  M. Doin,et al.  Slab surface temperature in subduction zones: Influence of the interplate decoupling depth and upper plate thinning processes , 2007 .

[32]  C. Langmuir,et al.  Chemical Systematics and Hydrous Melting of the Mantle in Back‐Arc Basins , 2013 .

[33]  K. Uto,et al.  Upper mantle isotopic components beneath the Ryukyu arc system: Evidence for ‘back-arc’ entrapment of Pacific MORB mantle , 2006 .

[34]  Katherine A. Kelley,et al.  Mantle melting as a function of water content beneath back-arc basins , 2006 .

[35]  K. Uto,et al.  Upper mantle isotopic components beneath the Ryukyu arc system: Evidence for ‘back-arc’ entrapment of Pacific MORB , 2006 .

[36]  Huang Peng,et al.  Geochemical features and their geological implications of volcanic rocks from the northern and middle Okinawa Trough , 2006 .

[37]  T. Pettke,et al.  Trace element signature of subduction-zone fluids, melts and supercritical liquids at 120–180 km depth , 2005, Nature.

[38]  R. Stern,et al.  Geochemical mapping of the Mariana arc‐basin system: Implications for the nature and distribution of subduction components , 2005 .

[39]  T. Plank Constraints from Thorium/Lanthanum on Sediment Recycling at Subduction Zones and the Evolution of the Continents , 2005 .

[40]  S. Hart,et al.  Major and trace element composition of the depleted MORB mantle (DMM) , 2005 .

[41]  Mai WeiLin Areal Difference of Middle and Southern Basalts from the Okinawa Trough and Its Genesis Study , 2004 .

[42]  B. Taylor,et al.  Back-arc basin basalt systematics , 2003 .

[43]  Jiang Wei-wei Character of geophysical field and crustal structure of Okinawa Trough and adjacent region , 2003 .

[44]  M. Fisk,et al.  Geochemistry of back arc basin volcanism in Bransfield Strait, Antarctica: Subducted contributions and along-axis variations , 2002 .

[45]  Li Nai-sheng On tectonic problems of the Okinawa Trough , 2001 .

[46]  Zhao Guang VOLCANIC ROCKS FROM OKINAWA TROUGH-A KEY TO THE DYNAMIC PROCESS DURING THE INITIAL SPREADING STAGE OF THE BACK ARC BASIN , 2001 .

[47]  Yong,et al.  Linear magnetic anomalies and tectonic development of the middle Okinawa Trough , 2001 .

[48]  Marie C. Johnson,et al.  Dehydration and melting experiments constrain the fate of subducted sediments , 2000 .

[49]  R. Shinjo,et al.  Geochemical constraints on the origin of bimodal magmatism at the Okinawa Trough, an incipient back-arc basin , 2000 .

[50]  R. Shinjo,et al.  Geochemical and Sr‐Nd isotopic characteristics of volcanic rocks from the Okinawa Trough and Ryukyu Arc: Implications for the evolution of a young, intracontinental back arc basin , 1999 .

[51]  R. Shinjo Geochemistry of high Mg andesites and the tectonic evolution of the Okinawa Trough–Ryukyu arc system , 1999 .

[52]  B. Deffontaines,et al.  Okinawa trough backarc basin: Early tectonic and magmatic evolution , 1998 .

[53]  E. Nakamura,et al.  Across-arc variation of Li isotopes in lavas and implications for crust/mantle recycling at subduction zones , 1998 .

[54]  Charles H. Langmuir,et al.  The chemical composition of subducting sediment and its consequences for the crust and mantle , 1998 .

[55]  R. Shinjo Petrochemistry and tectonic significance of the emerged late Cenozoic basalts behind the Okinawa Troughs Ryukyu arc system , 1998 .

[56]  C. Hawkesworth,et al.  Constraints on flux rates and mantle dynamics beneath island arcs from Tonga–Kermadec lava geochemistry , 1997, Nature.

[57]  T. Plank,et al.  Element transport from slab to volcanic front at the Mariana arc , 1997 .

[58]  S. Nakano,et al.  Trace element transport during dehydration processes in the subducted oceanic crust: 1. Experiments and implications for the origin of ocean island basalts , 1997 .

[59]  Soa Hangzhou STUDY ON TIIE OLIVINE THOLEIITE OF THE SOUTHERN OKINAWA TROUGH , 1997 .

[60]  S. Newman,et al.  MORB mantle and subduction components interact to generate basalts in the southern Mariana Trough back-arc basin , 1996 .

[61]  H. Newsom,et al.  The role of hydrothermal fluids in the production of subduction zone magmas: Evidence from siderophile and chalcophile trace elements and boron , 1996 .

[62]  F. Ryerson,et al.  Experimental evidence for the origin of lead enrichment in convergent-margin magmas , 1995, Nature.

[63]  M. Menzies,et al.  Potassic volcanic rocks in NE China: Geochemical constraints on mantle source and magma genesis , 1995 .

[64]  F. Ryerson,et al.  Mineral-aqueous fluid partitioning of trace elements at 900°C and 2.0 GPa: Constraints on the trace element chemistry of mantle and deep crustal fluids , 1995 .

[65]  K. H. Wedepohl,et al.  The Composition of the Continental Crust , 1995 .

[66]  Ma Shu-lan,et al.  Magmatic evolution of Okinawa Trough during its early spreading stage , 1994 .

[67]  E. Nakamura,et al.  Origin of the slab component in arc lavas from across-arc variation of B and Pb isotopes , 1994, Nature.

[68]  C. Langmuir,et al.  Tracing trace elements from sediment input to volcanic output at subduction zones , 1993, Nature.

[69]  M. P. Gorton,et al.  Geochemistry of Igneous Rocks from Legs 127 and 128, Sea of Japan , 1992 .

[70]  H. Sakai,et al.  Major and trace element chemistry and D/H, 18O/16O, 87Sr/86Sr and 143Nd/144Nd ratios of rocks from the spreading center of the Okinawa Trough, a marginal back-arc basin , 1991 .

[71]  P. Lonsdale,et al.  Petrology of the axial ridge of the Mariana Trough backarc spreading center , 1990 .

[72]  S. Wesnousky,et al.  Large Earthquakes and Crustal Deformation Near Taiwan , 1989 .

[73]  W. McDonough,et al.  Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes , 1989, Geological Society, London, Special Publications.

[74]  Albrecht W. Hofmann,et al.  Chemical differentiation of the Earth: the relationship between mantle, continental crust, and oceanic crust , 1988 .

[75]  M. Kimura,et al.  Back Arc Extension in the Okinawa Trough , 1987 .

[76]  Peter A. Cawood,et al.  Composition of back-arc basin volcanics, Valu Fa Ridge, Lau Basin: Evidence for a slab-derived component in their mantle source , 1987 .

[77]  M. Kimura,et al.  THE OKINAWA TROUGH: GENESIS OF A BACK-ARC BASIN DEVELOPING ALONG A CONTINENTAL MARGIN , 1986 .

[78]  M. Kimura Back-arc rifting in the Okinawa Trough , 1985 .

[79]  M. Kimura,et al.  Okinawa Trough genesis: structure and evolution of a backarc basin developed in a continent , 1985 .

[80]  R. S. Lu,et al.  Okinawa Trough: Origin of a back-arc basin , 1980 .