Supplement to The Numerical Solution of Second-Order Boundary Value Problems on Nonuniform Meshes

In this paper, we examine the solution of second-order, scalar boundary value problems on nonuniform meshes. We show that certain commonly used difference schemes yield second-order accurate solutions despite the fact that their truncation error is of lower order. This result illuminates a limitation of the standard stability, consistency proof of convergence for difference schemes defined on nonuniform meshes. A technique of reducing centered-difference approximations of first-order systems to discretizations of the underlying scalar equation is developed. We treat both vertex-centered and cell-centered difference schemes and indicate how these results apply to partial differential equations on Cartesian product grids.