Neighborhood localized iterative multi-input multi-output detector using swarm intelligence

In this paper we propose neighborhood search (NS) assisted Swarm Intelligence (SI) technique for efficient Multi-input Multi-output (MIMO) receiver. The proposed NS-SI detection method iteratively decodes complex modulation schemes in MIMO system. The simulation results reveal that with this proposed NS-SI detection algorithm near optimal performance is achieved. The performance of proposed detector is better for higher order modulation schemes and large number of antennas. Key-Words—Multi-input Multi-output (MIMO), Swarm Intelligence (SI), ML detection

[1]  A. Robert Calderbank,et al.  Space-Time Codes for High Data Rate Wireless Communications : Performance criterion and Code Construction , 1998, IEEE Trans. Inf. Theory.

[2]  Gerard J. Foschini,et al.  Layered space-time architecture for wireless communication in a fading environment when using multi-element antennas , 1996, Bell Labs Technical Journal.

[3]  Ian J. Wassell,et al.  A new ordering for efficient sphere decoding , 2005, IEEE International Conference on Communications, 2005. ICC 2005. 2005.

[4]  John M. Cioffi,et al.  Iterative soft interference cancellation for multiple antenna systems , 2000, 2000 IEEE Wireless Communications and Networking Conference. Conference Record (Cat. No.00TH8540).

[5]  John M. Cioffi,et al.  Combined ML and DFE decoding for the V-BLAST system , 2000, 2000 IEEE International Conference on Communications. ICC 2000. Global Convergence Through Communications. Conference Record.

[6]  Yuhui Shi,et al.  Particle swarm optimization: developments, applications and resources , 2001, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546).

[7]  John M. Cioffi,et al.  Spatio-temporal coding for wireless communications , 1996, Proceedings of GLOBECOM'96. 1996 IEEE Global Telecommunications Conference.

[8]  Ian J. Wassell,et al.  EFFICIENT ML DETECTION FOR MIMO CHANNELS : ORDERED SPHERE DECODING , .

[9]  Tomohiko Uyematsu,et al.  Two Methods for Decreasing the Computational Complexity of the MIMO ML Decoder , 2004, ArXiv.

[10]  Reinaldo A. Valenzuela,et al.  Simplified processing for high spectral efficiency wireless communication employing multi-element arrays , 1999, IEEE J. Sel. Areas Commun..

[11]  Giuseppe Caire,et al.  On maximum-likelihood detection and the search for the closest lattice point , 2003, IEEE Trans. Inf. Theory.

[12]  Helmut Bölcskei,et al.  On the capacity of OFDM-based spatial multiplexing systems , 2002, IEEE Trans. Commun..

[13]  John M. Cioffi,et al.  Spatio-temporal coding for wireless communication , 1998, IEEE Trans. Commun..

[14]  M. J. Gans,et al.  On Limits of Wireless Communications in a Fading Environment when Using Multiple Antennas , 1998, Wirel. Pers. Commun..

[15]  Angel E. Lozano,et al.  Reduced-complexity detection algorithms for systems using multi-element arrays , 2000, Globecom '00 - IEEE. Global Telecommunications Conference. Conference Record (Cat. No.00CH37137).

[16]  Y. Rahmat-Samii,et al.  Particle swarm optimization in electromagnetics , 2004, IEEE Transactions on Antennas and Propagation.

[17]  Athina Lazakidou,et al.  Proceedings of the 6th WSEAS International Conference on Applied Informatics and Communications , 2006 .

[18]  Emanuele Viterbo,et al.  A universal lattice code decoder for fading channels , 1999, IEEE Trans. Inf. Theory.

[19]  Babak Hassibi,et al.  On the sphere-decoding algorithm I. Expected complexity , 2005, IEEE Transactions on Signal Processing.