Modeling of the large deformation and the rupture of a metallic plate subjected to explosion

Thin walled metal pressure vessels or pipes commonly used in industry can burst under certain circumstances: as a result, the pressure envelope may undergo large deformations, which may eventually lead to a rupture. The response of these vessels to static and quasi-static loads is relatively well-understood but their response to highly dynamic pressure loading conditions is not. This paper describes a numerical study of the response of circular metal plates to the dynamic loads produced by hydrogen-oxygen explosions. In this study, a range of dynamic responses and rupture criteria models are considered and compared with the results of experiments. The ability of MSC MARC software to model the rupture phase and, in some cases, the post-rupture phase (i.e., fragment production) is also discussed.

[1]  Jacques Besson,et al.  Ductile tearing of pipeline-steel wide plates: II. Modeling of in-plane crack propagation , 2001 .

[2]  N. Récho Rupture par fissuration des structures , 1995 .

[3]  Olivier Pennetier,et al.  Experiments and Numerical Simulations on Thin Metallic Plates Subjected to an Explosion , 2001 .

[4]  Jacques Besson,et al.  Ductile tearing of pipeline-steel wide plates: I. Dynamic and quasi-static experiments , 2001 .

[5]  G. Saville,et al.  Rapid depressurization of pressure vessels , 1990 .

[6]  Vasilis Fthenakis,et al.  A simple model for predicting the release of a liquid-vapor mixture from a large break in a pressurized container , 2003 .

[7]  J. B. Martin,et al.  Deformation of thin plates subjected to impulsive loading—a review Part II: Experimental studies , 1989 .

[8]  M. Enoki,et al.  A model for the dynamic fracture toughness of ductile structural steel , 2002 .

[9]  G. Nurick,et al.  The deformation and tearing of thin circular plates subjected to impulsive loads , 1990 .

[10]  G. N. Nurick,et al.  The Deformation of Thin Plates Subjected to Impulsive Loading , 1986 .

[11]  G. R. Johnson,et al.  Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures , 1985 .

[12]  J. Lemaitre,et al.  Mécanique des matériaux solides , 1996 .

[13]  A. L. Florence Circular plate under a uniformly distributed impulse , 1966 .

[14]  François Rivalin,et al.  Développement d'aciers pour gazoducs à haute limite d'élasticité et ténacité élevée : mécanique et mécanismes de la rupture ductile à grande vitesse , 1998 .

[15]  T. Wierzbicki,et al.  Fracture prediction of thin plates under localized impulsive loading. Part II: discing and petalling , 2005 .

[16]  B. Su,et al.  Elastic fracture properties of all-steel gas cylinders with different axial crack types , 1999 .

[17]  J. Shepherd,et al.  The Structural Response of Cylindrical Shells to Internal Shock Loading , 1999 .

[18]  K. S. Mudan,et al.  Liquid and gas discharge rates through holes in process vessels , 1991 .

[19]  Joseph C. Leung,et al.  Two-phase flow discharge in nozzles and pipes — a unified approach☆ , 1990 .

[20]  Albert S. Kobayashi,et al.  An experimental and analytical investigation of axial crack propagation in long pipes , 1986 .

[21]  J. Renard,et al.  Structures minces face à une explosion. Application à la gestion de risques industriels , 1998 .