Multi-degree smooth polar splines: A framework for geometric modeling and isogeometric analysis

We develop a multi-degree polar spline framework with applications to both geometric modeling and isogeometric analysis. First, multi-degree splines are introduced as piecewise non-uniform rational B-splines (NURBS) of non-uniform or variable polynomial degree, and a simple algorithm for their construction is presented. Then, an extension to two-dimensional polar configurations is provided by means of a tensor-product construction with a collapsed edge. Suitable combinations of these basis functions, encoded in a so-called isogeometric analysis suitable extraction operator, yield CkCk smooth polar splines for any k≥0k≥0. We show that it is always possible to construct a set of smooth polar spline basis functions that form a convex partition of unity and possess locality. Explicit constructions for k∈{0,1,2}k∈{0,1,2} are presented. Optimal approximation behavior is observed numerically, and examples of applications to free-form design, smooth hole-filling, and high-order partial differential equations demonstrate the applicability of the developed framework.

[1]  Giancarlo Sangalli,et al.  Analysis-suitable G1 multi-patch parametrizations for C1 isogeometric spaces , 2016, Comput. Aided Geom. Des..

[2]  Jörg Peters,et al.  A Comparative Study of Several Classical, Discrete Differential and Isogeometric Methods for Solving Poisson's Equation on the Disk , 2014, Axioms.

[3]  John A. Gregory,et al.  Filling polygonal holes with bicubic patches , 1994, Comput. Aided Geom. Des..

[4]  L. Schumaker Spline Functions: Basic Theory , 1981 .

[5]  Jörg Peters,et al.  Pairs of bi-cubic surface constructions supporting polar connectivity , 2008, Comput. Aided Geom. Des..

[6]  Thomas W. Sederberg,et al.  Knot intervals and multi-degree splines , 2003, Comput. Aided Geom. Des..

[7]  Hendrik Speleers,et al.  Weight control for modelling with NURPS surfaces , 2007, Comput. Aided Geom. Des..

[8]  Hendrik Speleers,et al.  Construction of Normalized B-Splines for a Family of Smooth Spline Spaces Over Powell–Sabin Triangulations , 2013 .

[9]  Josep Cotrina Navau,et al.  Modeling surfaces from meshes of arbitrary topology , 2000, Comput. Aided Geom. Des..

[10]  Jörg Peters,et al.  A C2 polar jet subdivision , 2006, SGP '06.

[11]  Jörg Peters,et al.  Bicubic polar subdivision , 2007, TOGS.

[12]  Brian A. Barsky,et al.  Computer Graphics and Geometric Modeling Using Beta-splines , 1988, Computer Science Workbench.

[13]  Xin Li,et al.  A Geometric Approach for Multi-Degree Spline , 2012, Journal of Computer Science and Technology.

[14]  Jun-Hai Yong,et al.  Gn filling orbicular N-sided holes using periodic B-spline surfaces , 2011, Science China Information Sciences.

[15]  MylesAshish,et al.  Bi-3 C2 polar subdivision , 2009 .

[16]  Adi Levin,et al.  Filling N-sided Holes Using Combined Subdivision Schemes , 2000 .

[17]  G. Strang,et al.  An Analysis of the Finite Element Method , 1974 .

[18]  Wanqiang Shen,et al.  A basis of multi-degree splines , 2010, Comput. Aided Geom. Des..

[19]  N. Young,et al.  Chain rules for higher derivatives , 2006 .

[20]  Hartmut Prautzsch,et al.  Freeform splines , 1997, Computer Aided Geometric Design.

[21]  Jörg Peters,et al.  Finite Curvature Continuous Polar Patchworks , 2009, IMA Conference on the Mathematics of Surfaces.

[22]  Alfio Quarteroni,et al.  Isogeometric Analysis for second order Partial Differential Equations on surfaces , 2015 .

[23]  Jia Lu,et al.  Cylindrical element: Isogeometric model of continuum rod , 2011 .

[24]  Bert Jüttler,et al.  Existence of stiffness matrix integrals for singularly parameterized domains in isogeometric analysis , 2011 .

[25]  Jörg Peters,et al.  Refinable C1 spline elements for irregular quad layout , 2016, Comput. Aided Geom. Des..

[26]  Jörg Peters,et al.  C2 splines covering polar configurations , 2011, Comput. Aided Des..

[27]  Larry L. Schumaker,et al.  Spline functions on triangulations , 2007, Encyclopedia of mathematics and its applications.

[28]  Bert Jüttler,et al.  H2 regularity properties of singular parameterizations in isogeometric analysis , 2012, Graph. Model..

[29]  T. Hughes,et al.  Isogeometric analysis of the Cahn–Hilliard phase-field model , 2008 .

[30]  Jun-Hai Yong,et al.  Gn blending multiple surfaces in polar coordinates , 2010, Comput. Aided Des..

[31]  Wanqiang Shen,et al.  Changeable degree spline basis functions , 2010, J. Comput. Appl. Math..

[32]  B. Barsky,et al.  An explicit derivation of discretely shaped Beta-spline basis functions of arbitrary order , 1992 .

[33]  Thomas J. R. Hughes,et al.  Patient-Specific Vascular NURBS Modeling for Isogeometric Analysis of Blood Flow , 2007, IMR.

[34]  Jia Lu,et al.  Circular element: Isogeometric elements of smooth boundary , 2009 .

[35]  Ashish Myles,et al.  Bi-3 C 2 polar subdivision , 2009, SIGGRAPH 2009.

[36]  K.-L. Shi,et al.  Polar NURBS Surface with Curvature Continuity , 2013, Comput. Graph. Forum.

[37]  Wayne Tiller,et al.  Knot-removal algorithms for NURBS curves and surfaces , 1992, Comput. Aided Des..

[38]  Alireza Karimi,et al.  A computational fluid-structure interaction model for plaque vulnerability assessment in atherosclerotic human coronary arteries , 2014 .

[39]  Adi Levin Modified subdivision surfaces with continuous curvature , 2006, SIGGRAPH 2006.

[40]  U. Reif TURBS—Topologically Unrestricted Rational B-Splines , 1998 .

[41]  T. Goodman Properties of ?-splines , 1985 .

[42]  Mario Kapl,et al.  Isogeometric analysis with geometrically continuous functions on planar multi-patch geometries , 2017 .

[43]  Thomas J. R. Hughes,et al.  Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .

[44]  Les A. Piegl,et al.  The NURBS Book , 1995, Monographs in Visual Communication.

[45]  Thomas Takacs,et al.  Construction of Smooth Isogeometric Function Spaces on Singularly Parameterized Domains , 2014, Curves and Surfaces.

[46]  John A. Evans,et al.  Isogeometric finite element data structures based on Bézier extraction of NURBS , 2011 .

[47]  Les A. Piegl,et al.  Filling n-sided regions with NURBS patches , 1999, The Visual Computer.

[48]  D. Zorin,et al.  A simple manifold-based construction of surfaces of arbitrary smoothness , 2004, SIGGRAPH 2004.

[49]  Ju Liu,et al.  Isogeometric analysis of the advective Cahn-Hilliard equation: Spinodal decomposition under shear flow , 2013, J. Comput. Phys..

[50]  Ping Yin,et al.  Explicit representations of changeable degree spline basis functions , 2013, J. Comput. Appl. Math..