Multi-degree smooth polar splines: A framework for geometric modeling and isogeometric analysis
暂无分享,去创建一个
Hendrik Speleers | Thomas J. R. Hughes | Deepesh Toshniwal | René R. Hiemstra | T. Hughes | D. Toshniwal | H. Speleers | R. Hiemstra
[1] Giancarlo Sangalli,et al. Analysis-suitable G1 multi-patch parametrizations for C1 isogeometric spaces , 2016, Comput. Aided Geom. Des..
[2] Jörg Peters,et al. A Comparative Study of Several Classical, Discrete Differential and Isogeometric Methods for Solving Poisson's Equation on the Disk , 2014, Axioms.
[3] John A. Gregory,et al. Filling polygonal holes with bicubic patches , 1994, Comput. Aided Geom. Des..
[4] L. Schumaker. Spline Functions: Basic Theory , 1981 .
[5] Jörg Peters,et al. Pairs of bi-cubic surface constructions supporting polar connectivity , 2008, Comput. Aided Geom. Des..
[6] Thomas W. Sederberg,et al. Knot intervals and multi-degree splines , 2003, Comput. Aided Geom. Des..
[7] Hendrik Speleers,et al. Weight control for modelling with NURPS surfaces , 2007, Comput. Aided Geom. Des..
[8] Hendrik Speleers,et al. Construction of Normalized B-Splines for a Family of Smooth Spline Spaces Over Powell–Sabin Triangulations , 2013 .
[9] Josep Cotrina Navau,et al. Modeling surfaces from meshes of arbitrary topology , 2000, Comput. Aided Geom. Des..
[10] Jörg Peters,et al. A C2 polar jet subdivision , 2006, SGP '06.
[11] Jörg Peters,et al. Bicubic polar subdivision , 2007, TOGS.
[12] Brian A. Barsky,et al. Computer Graphics and Geometric Modeling Using Beta-splines , 1988, Computer Science Workbench.
[13] Xin Li,et al. A Geometric Approach for Multi-Degree Spline , 2012, Journal of Computer Science and Technology.
[14] Jun-Hai Yong,et al. Gn filling orbicular N-sided holes using periodic B-spline surfaces , 2011, Science China Information Sciences.
[15] MylesAshish,et al. Bi-3 C2 polar subdivision , 2009 .
[16] Adi Levin,et al. Filling N-sided Holes Using Combined Subdivision Schemes , 2000 .
[17] G. Strang,et al. An Analysis of the Finite Element Method , 1974 .
[18] Wanqiang Shen,et al. A basis of multi-degree splines , 2010, Comput. Aided Geom. Des..
[19] N. Young,et al. Chain rules for higher derivatives , 2006 .
[20] Hartmut Prautzsch,et al. Freeform splines , 1997, Computer Aided Geometric Design.
[21] Jörg Peters,et al. Finite Curvature Continuous Polar Patchworks , 2009, IMA Conference on the Mathematics of Surfaces.
[22] Alfio Quarteroni,et al. Isogeometric Analysis for second order Partial Differential Equations on surfaces , 2015 .
[23] Jia Lu,et al. Cylindrical element: Isogeometric model of continuum rod , 2011 .
[24] Bert Jüttler,et al. Existence of stiffness matrix integrals for singularly parameterized domains in isogeometric analysis , 2011 .
[25] Jörg Peters,et al. Refinable C1 spline elements for irregular quad layout , 2016, Comput. Aided Geom. Des..
[26] Jörg Peters,et al. C2 splines covering polar configurations , 2011, Comput. Aided Des..
[27] Larry L. Schumaker,et al. Spline functions on triangulations , 2007, Encyclopedia of mathematics and its applications.
[28] Bert Jüttler,et al. H2 regularity properties of singular parameterizations in isogeometric analysis , 2012, Graph. Model..
[29] T. Hughes,et al. Isogeometric analysis of the Cahn–Hilliard phase-field model , 2008 .
[30] Jun-Hai Yong,et al. Gn blending multiple surfaces in polar coordinates , 2010, Comput. Aided Des..
[31] Wanqiang Shen,et al. Changeable degree spline basis functions , 2010, J. Comput. Appl. Math..
[32] B. Barsky,et al. An explicit derivation of discretely shaped Beta-spline basis functions of arbitrary order , 1992 .
[33] Thomas J. R. Hughes,et al. Patient-Specific Vascular NURBS Modeling for Isogeometric Analysis of Blood Flow , 2007, IMR.
[34] Jia Lu,et al. Circular element: Isogeometric elements of smooth boundary , 2009 .
[35] Ashish Myles,et al. Bi-3 C 2 polar subdivision , 2009, SIGGRAPH 2009.
[36] K.-L. Shi,et al. Polar NURBS Surface with Curvature Continuity , 2013, Comput. Graph. Forum.
[37] Wayne Tiller,et al. Knot-removal algorithms for NURBS curves and surfaces , 1992, Comput. Aided Des..
[38] Alireza Karimi,et al. A computational fluid-structure interaction model for plaque vulnerability assessment in atherosclerotic human coronary arteries , 2014 .
[39] Adi Levin. Modified subdivision surfaces with continuous curvature , 2006, SIGGRAPH 2006.
[40] U. Reif. TURBS—Topologically Unrestricted Rational B-Splines , 1998 .
[41] T. Goodman. Properties of ?-splines , 1985 .
[42] Mario Kapl,et al. Isogeometric analysis with geometrically continuous functions on planar multi-patch geometries , 2017 .
[43] Thomas J. R. Hughes,et al. Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .
[44] Les A. Piegl,et al. The NURBS Book , 1995, Monographs in Visual Communication.
[45] Thomas Takacs,et al. Construction of Smooth Isogeometric Function Spaces on Singularly Parameterized Domains , 2014, Curves and Surfaces.
[46] John A. Evans,et al. Isogeometric finite element data structures based on Bézier extraction of NURBS , 2011 .
[47] Les A. Piegl,et al. Filling n-sided regions with NURBS patches , 1999, The Visual Computer.
[48] D. Zorin,et al. A simple manifold-based construction of surfaces of arbitrary smoothness , 2004, SIGGRAPH 2004.
[49] Ju Liu,et al. Isogeometric analysis of the advective Cahn-Hilliard equation: Spinodal decomposition under shear flow , 2013, J. Comput. Phys..
[50] Ping Yin,et al. Explicit representations of changeable degree spline basis functions , 2013, J. Comput. Appl. Math..