Domain wall dynamics in two-dimensional van der Waals ferromagnets

[1]  J. Wrachtrup,et al.  Magnetic domains and domain wall pinning in atomically thin CrBr3 revealed by nanoscale imaging , 2021, Nature Communications.

[2]  K. Novoselov,et al.  Quantum Rescaling, Domain Metastability, and Hybrid Domain‐Walls in 2D CrI3 Magnets , 2020, Advanced materials.

[3]  K. Novoselov,et al.  Properties and dynamics of meron topological spin textures in the two-dimensional magnet CrCl3 , 2020, Nature Communications.

[4]  M. Deshmukh,et al.  Observation of Standing Spin Waves in a van der Waals Magnetic Material , 2020, Advanced materials.

[5]  D. Qian,et al.  Layer-Dependent Mechanical Properties and Enhanced Plasticity in the Van der Waals Chromium Trihalide Magnets , 2020, Nano letters.

[6]  S. van Dijken,et al.  Electronic and Magnetic Characterization of Epitaxial CrBr3 Monolayers on a Superconducting Substrate , 2020, Advanced materials.

[7]  D. Ralph,et al.  Manipulation of the van der Waals Magnet Cr2Ge2Te6 by Spin-Orbit Torques. , 2020, Nano letters.

[8]  M. Katsnelson,et al.  Magnetic Two-Dimensional Chromium Trihalides: A Theoretical Perspective. , 2020, Nano letters.

[9]  S. Parkin,et al.  Intrinsic 2D-XY ferromagnetism in a van der Waals monolayer , 2020, Science.

[10]  K. Novoselov,et al.  Biquadratic exchange interactions in two-dimensional magnets , 2020, npj Computational Materials.

[11]  H. Walker,et al.  Evidence for biquadratic exchange in the quasi-two-dimensional antiferromagnet FePS3 , 2020, Journal of Applied Physics.

[12]  Simone Finizio,et al.  Current-driven magnetic domain-wall logic , 2020, Nature.

[13]  Giulia Marcucci,et al.  Topological control of extreme waves , 2019, Nature Communications.

[14]  Hyun Ho Kim,et al.  Evolution of interlayer and intralayer magnetism in three atomically thin chromium trihalides , 2019, Proceedings of the National Academy of Sciences.

[15]  Yong Peng,et al.  Current-driven magnetization switching in a van der Waals ferromagnet Fe3GeTe2 , 2019, Science Advances.

[16]  M. Fiebig,et al.  High-speed domain wall racetracks in a magnetic insulator , 2019, Nature Communications.

[17]  S. Carron,et al.  Spin-current-mediated rapid magnon localisation and coalescence after ultrafast optical pumping of ferrimagnetic alloys , 2018, Nature Communications.

[18]  F. Tafti,et al.  Controlling Magnetic and Optical Properties of the van der Waals Crystal CrCl3−xBrx via Mixed Halide Chemistry , 2018, Advanced materials.

[19]  Hyun Ho Kim,et al.  One Million Percent Tunnel Magnetoresistance in a Magnetic van der Waals Heterostructure. , 2018, Nano letters.

[20]  K. Novoselov,et al.  Magnon-assisted tunnelling in van der Waals heterostructures based on CrBr3 , 2018, Nature Electronics.

[21]  Yan Zhang,et al.  Long-distance propagation of short-wavelength spin waves , 2018, Nature Communications.

[22]  Jie Shan,et al.  Controlling magnetism in 2D CrI3 by electrostatic doping , 2018, Nature Nanotechnology.

[23]  T. Taniguchi,et al.  Probing magnetism in 2D van der Waals crystalline insulators via electron tunneling , 2018, Science.

[24]  A. Yacoby,et al.  Probing condensed matter physics with magnetometry based on nitrogen-vacancy centres in diamond , 2018, 1804.08742.

[25]  A. Pasupathy,et al.  Magnetism in semiconducting molybdenum dichalcogenides , 2017, Science Advances.

[26]  Michael A. McGuire,et al.  Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit , 2017, Nature.

[27]  S. Louie,et al.  Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals , 2017, Nature.

[28]  Cyril C. Renaud,et al.  The 2017 terahertz science and technology roadmap , 2017, Journal of Physics D: Applied Physics.

[29]  Fengren Fan,et al.  Doping enhanced ferromagnetism and induced half-metallicity in CrI3 monolayer , 2016 .

[30]  Panayotis G. Kevrekidis,et al.  The Defocusing Nonlinear Schrödinger Equation - From Dark Solitons to Vortices and Vortex Rings , 2015 .

[31]  R. Duine,et al.  Long-distance transport of magnon spin information in a magnetic insulator at room temperature , 2015, Nature Physics.

[32]  Stuart Parkin,et al.  Memory on the racetrack. , 2015, Nature nanotechnology.

[33]  S. Parkin,et al.  Domain-wall velocities of up to 750 m s(-1) driven by exchange-coupling torque in synthetic antiferromagnets. , 2015, Nature nanotechnology.

[34]  Benjamin Krueger,et al.  Observation of room-temperature magnetic skyrmions and their current-driven dynamics in ultrathin metallic ferromagnets. , 2015, Nature materials.

[35]  S. Parkin,et al.  Chiral spin torque at magnetic domain walls. , 2013, Nature nanotechnology.

[36]  Ye. Pogoryelov,et al.  Spin Torque–Generated Magnetic Droplet Solitons , 2013, Science.

[37]  G. Beach,et al.  Current-driven dynamics of chiral ferromagnetic domain walls. , 2013, Nature materials.

[38]  L. Buda-Prejbeanu,et al.  Fast current-induced domain-wall motion controlled by the Rashba effect. , 2011, Nature materials.

[39]  S. Maekawa,et al.  Transmission of electrical signals by spin-wave interconversion in a magnetic insulator , 2010, Nature.

[40]  M. Bailleul,et al.  Current-Induced Spin-Wave Doppler Shift , 2008, Science.

[41]  Gen Tatara,et al.  Microscopic approach to current-driven domain wall dynamics , 2008, 0807.2894.

[42]  S. Parkin,et al.  Magnetic Domain-Wall Racetrack Memory , 2008, Science.

[43]  Geoffrey S. D. Beach,et al.  Current-induced domain wall motion , 2008 .

[44]  K. Xia,et al.  An all-metallic logic gate based on current-driven domain wall motion. , 2008, Nature nanotechnology.

[45]  D. Ralph,et al.  Spin transfer torques , 2007, 0711.4608.

[46]  A. Fert,et al.  The emergence of spin electronics in data storage. , 2007, Nature materials.

[47]  D Petit,et al.  Magnetic Domain-Wall Logic , 2005, Science.

[48]  Yoshishige Suzuki,et al.  Micromagnetic understanding of current-driven domain wall motion in patterned nanowires , 2004, cond-mat/0407628.

[49]  Gang Xiong,et al.  Submicrometer Ferromagnetic NOT Gate and Shift Register , 2002, Science.

[50]  R. Cowburn,et al.  Room temperature magnetic quantum cellular automata , 2000, Science.

[51]  N. L. Schryer,et al.  The motion of 180° domain walls in uniform dc magnetic fields , 1974 .

[52]  M Bode Spin-polarized scanning tunnelling microscopy , 2003 .