LISA parameter estimation using numerical merger waveforms

Recent advances in numerical relativity provide a detailed description of the waveforms of coalescing massive black hole binaries (MBHBs), expected to be the strongest detectable LISA sources. We present a preliminary study of LISA's sensitivity to MBHB parameters using a hybrid numerical/analytic waveform for equal-mass, non-spinning holes. The Synthetic LISA software package is used to simulate the instrument response, and the Fisher information matrix method is used to estimate errors in the parameters. Initial results indicate that inclusion of the merger signal can significantly improve the precision of some parameter estimates. For example, the median parameter errors for an ensemble of systems with total redshifted mass of 106 M⊙ at a redshift of z ∼ 1 were found to decrease by a factor of slightly more than two for signals with merger as compared to signals truncated at the Schwarzchild ISCO.

[1]  S. Babak,et al.  Resolving Super Massive Black Holes with LISA , 2008, 0806.1591.

[2]  E. Porter,et al.  Effect of higher harmonic corrections on the detection of massive black hole binaries with LISA , 2008, 0804.0332.

[3]  M. Vallisneri Use and abuse of the Fisher information matrix in the assessment of gravitational-wave parameter-estimation prospects , 2007, gr-qc/0703086.

[4]  R. Lang,et al.  Localizing Coalescing Massive Black Hole Binaries with Gravitational Waves , 2007, 0710.3795.

[5]  C. Broeck,et al.  Higher signal harmonics, LISA's angular resolution, and dark energy , 2007, 0707.3920.

[6]  S. McWilliams,et al.  Binary black hole late inspiral: Simulations for gravitational wave observations , 2006, gr-qc/0612117.

[7]  M. Volonteri Supermassive black hole mergers and cosmological structure formation , 2006, astro-ph/0609741.

[8]  R. Lang,et al.  Measuring coalescing massive binary black holes with gravitational waves: The impact of spin-induced precession , 2006, gr-qc/0608062.

[9]  L. Blanchet Gravitational Radiation from Post-Newtonian Sources and Inspiralling Compact Binaries , 2006, Living reviews in relativity.

[10]  Dae-Il Choi,et al.  Binary black hole merger dynamics and waveforms , 2006, gr-qc/0602026.

[11]  Last orbit of binary black holes , 2006, gr-qc/0601091.

[12]  N. Cornish,et al.  Characterizing the galactic gravitational wave background with LISA , 2005, gr-qc/0504071.

[13]  Daniel E. Holz,et al.  Using Gravitational-Wave Standard Sirens , 2005, astro-ph/0504616.

[14]  M. Vallisneri Synthetic LISA: Simulating time delay interferometry in a model LISA , 2004, gr-qc/0407102.

[15]  A. Królak,et al.  Optimal filtering of the LISA data , 2004, gr-qc/0401108.

[16]  Alberto Vecchio,et al.  LISA observations of rapidly spinning massive black hole binary systems , 2003, astro-ph/0304051.

[17]  S. Larson,et al.  The LISA optimal sensitivity , 2002, gr-qc/0209039.

[18]  S. Larson,et al.  Unequal arm space-borne gravitational wave detectors , 2002, gr-qc/0206081.

[19]  L. Blanchet Gravitational Radiation from Post-Newtonian Sources and Inspiralling Compact Binaries , 2002, Living reviews in relativity.

[20]  J. Armstrong,et al.  Time-delay analysis of LISA gravitational data: elimination spacecraft motion effects , 2000 .

[21]  John W. Armstrong,et al.  Cancellation of laser noise in an unequal-arm interferometer detector of gravitational radiation , 1999 .

[22]  C. Cutler Angular resolution of the LISA gravitational wave detector , 1997, gr-qc/9703068.