On the mechanical behaviour of titanium alloy TiAl6V4 manufactured by selective laser melting: Fatigue resistance and crack growth performance

[1]  Alexander M. Mood,et al.  A Method for Obtaining and Analyzing Sensitivity Data , 1948 .

[2]  D. Benson,et al.  Mechanisms of fatigue in mill-annealed Ti-6Al-4V at room temperature and 600°F , 1972 .

[3]  Guk-Rwang Won American Society for Testing and Materials , 1987 .

[4]  David L. Bourell,et al.  Post‐processing of selective laser sintered metal parts , 1995 .

[5]  Ming-Chuan Leu,et al.  Progress in Additive Manufacturing and Rapid Prototyping , 1998 .

[6]  Mitsuo Niinomi,et al.  Mechanical properties of biomedical titanium alloys , 1998 .

[7]  James C. Newman,et al.  Fatigue crack growth thresholds, endurance limits, and design , 2000 .

[8]  K. Osakada,et al.  The manufacturing of hard tools from metallic powders by selective laser melting , 2001 .

[9]  Robert O. Ritchie,et al.  Effects of microstructure on mixed-mode, high-cycle fatigue crack-growth thresholds in Ti-6Al-4V alloy , 2002 .

[10]  Gideon Levy,et al.  RAPID MANUFACTURING AND RAPID TOOLING WITH LAYER MANUFACTURING (LM) TECHNOLOGIES, STATE OF THE ART AND FUTURE PERSPECTIVES , 2003 .

[11]  Christoph Leyens,et al.  Titanium Alloys for Aerospace Applications , 2003 .

[12]  K. Osakada,et al.  Residual Stress within Metallic Model Made by Selective Laser Melting Process , 2004 .

[13]  Kozo Osakada,et al.  Microstructure and mechanical properties of pure titanium models fabricated by selective laser melting , 2004 .

[14]  L. Froyen,et al.  Binding Mechanisms in Selective Laser Sintering and Selective Laser Melting , 2004 .

[15]  C. Leyens,et al.  Titanium and titanium alloys : fundamentals and applications , 2005 .

[16]  J. Kruth,et al.  Residual stresses in selective laser sintering and selective laser melting , 2006 .

[17]  Theodore Nicholas,et al.  Staircase testing of a titanium alloy in the gigacycle regime , 2006 .

[18]  Ryan B. Wicker,et al.  Microstructures and mechanical properties of electron beam-rapid manufactured Ti–6Al–4V biomedical prototypes compared to wrought Ti–6Al–4V , 2009 .

[19]  R. Valiev,et al.  Cyclic deformation behavior and fatigue lives of ultrafine-grained Ti-6AL-4V ELI alloy for medical use , 2009 .

[20]  Ryan B. Wicker,et al.  Characterization of titanium aluminide alloy components fabricated by additive manufacturing using electron beam melting , 2010 .

[21]  Ryan B. Wicker,et al.  Characterization of Ti–6Al–4V open cellular foams fabricated by additive manufacturing using electron beam melting , 2010 .

[22]  Shivakumar Raman,et al.  Mechanical evaluation of porous titanium (Ti6Al4V) structures with electron beam melting (EBM). , 2010, Journal of the mechanical behavior of biomedical materials.

[23]  H. Maier,et al.  In situ characterization of the deformation and failure behavior of non-stochastic porous structures processed by selective laser melting , 2011 .

[24]  B. Baufeld,et al.  Thermal expansion and lattice parameters of shaped metal deposited Ti–6Al–4V , 2011 .

[25]  B. Oberwinkler Modeling the fatigue crack growth behavior of Ti-6Al-4V by considering grain size and stress ratio , 2011 .

[26]  C. Colin,et al.  As-Fabricated and Heat-Treated Microstructures of the Ti-6Al-4V Alloy Processed by Selective Laser Melting , 2011 .

[27]  Christoph Leyens,et al.  Mechanical properties of additive manufactured titanium (Ti–6Al–4V) blocks deposited by a solid-state laser and wire , 2011 .

[28]  Omer Van der Biest,et al.  Wire based additive layer manufacturing: Comparison of microstructure and mechanical properties of Ti–6Al–4V components fabricated by laser-beam deposition and shaped metal deposition , 2011 .

[29]  Yang Hao,et al.  Compression fatigue behavior of Ti-6Al-4V mesh arrays fabricated by electron beam melting , 2012 .

[30]  C. Colin,et al.  Microstructural and mechanical approaches of the selective laser melting process applied to a nickel-base superalloy , 2012 .

[31]  E. Brandl,et al.  Additive manufactured AlSi10Mg samples using Selective Laser Melting (SLM): Microstructure, high cycle fatigue, and fracture behavior , 2012 .

[32]  B. Zhang,et al.  Microstructure Dependent Fatigue Cracking Resistance of Ti{6.5Al{3.5Mo{1.5Zr{0.3Si Alloy , 2012 .