Thermal infrared near-field spectroscopy.

Despite the seminal contributions of Kirchhoff and Planck describing far-field thermal emission, fundamentally distinct spectral characteristics of the electromagnetic thermal near-field have been predicted. However, due to their evanescent nature their direct experimental characterization has remained elusive. Combining scattering scanning near-field optical microscopy with Fourier-transform spectroscopy using a heated atomic force microscope tip as both a local thermal source and scattering probe, we spectroscopically characterize the thermal near-field in the mid-infrared. We observe the spectrally distinct and orders of magnitude enhanced resonant spectral near-field energy density associated with vibrational, phonon, and phonon-polariton modes. We describe this behavior and the associated distinct on- and off-resonance nanoscale field localization with model calculations of the near-field electromagnetic local density of states. Our results provide a basis for intrinsic and extrinsic resonant manipulation of optical forces, control of nanoscale radiative heat transfer with optical antennas, and use of this new technique of thermal infrared near-field spectroscopy for broadband chemical nanospectroscopy.

[1]  M. Raschke,et al.  Optical Antenna Properties of Scanning Probe Tips: Plasmonic Light Scattering, Tip−Sample Coupling, and Near-Field Enhancement , 2008 .

[2]  Gang Chen,et al.  Surface phonon polaritons mediated energy transfer between nanoscale gaps. , 2009, Nano letters.

[3]  A. Kittel,et al.  Near-field thermal imaging of nanostructured surfaces , 2008, 1103.3059.

[4]  Jean-Jacques Greffet,et al.  Radiative heat transfer at the nanoscale , 2009 .

[5]  Shanhui Fan,et al.  Temperature dependence of surface phonon polaritons from a quartz grating , 2011 .

[6]  John B. Pendry,et al.  Radiative exchange of heat between nanostructures , 1999 .

[7]  Jean-Jacques Greffet,et al.  Heat transfer between a nano-tip and a surface , 2006 .

[8]  Glenn D Boreman,et al.  Determination of electric-field, magnetic-field, and electric-current distributions of infrared optical antennas: a near-field optical vector network analyzer. , 2010, Physical review letters.

[9]  K. Joulain,et al.  Definition and measurement of the local density of electromagnetic states close to an interface , 2004, InternationalQuantum Electronics Conference, 2004. (IQEC)..

[10]  Thomas Taubner,et al.  Optical antenna thermal emitters , 2009 .

[11]  R. Carminati,et al.  Surface electromagnetic waves thermally excited: Radiative heat transfer, coherence properties and Casimir forces revisited in the near field , 2005, physics/0504068.

[12]  Ceji Fu,et al.  Nanoscale radiation heat transfer for silicon at different doping levels , 2006 .

[13]  Dong Ha Kim,et al.  Apertureless near-field vibrational imaging of block-copolymer nanostructures with ultrahigh spatial resolution. , 2005, Chemphyschem : a European journal of chemical physics and physical chemistry.

[14]  F. Gervais,et al.  Temperature dependence of transverse and longitudinal optic modes in the α and β phases of quartz , 1975 .

[15]  Christoph Lienau,et al.  Apertureless near-field optical microscopy: Tip–sample coupling in elastic light scattering , 2003 .

[16]  R. Hillenbrand,et al.  Analytical model for quantitative prediction of material contrasts in scattering-type near-field optical microscopy. , 2007, Optics express.

[17]  M. Schnell,et al.  Infrared-spectroscopic nanoimaging with a thermal source. , 2011, Nature materials.

[18]  S. M. Rytov,et al.  Principles of statistical radiophysics , 1987 .

[19]  H. O. McMahon,et al.  Thermal Radiation from Partially Transparent Reflecting Bodies , 1950 .

[20]  Shanhui Fan,et al.  Thermal rectification through vacuum. , 2010, Physical review letters.

[21]  S. Stringari,et al.  New asymptotic behavior of the surface-atom force out of thermal equilibrium. , 2005, Physical review letters.

[22]  H. Bechtel,et al.  Improved spatial resolution for reflection mode infrared microscopy. , 2009, The Review of scientific instruments.

[23]  H. Casimir,et al.  The Influence of Retardation on the London-van der Waals Forces , 1948 .

[24]  S. Krimm,et al.  Infrared Spectra of High Polymers. III. Polytetrafluoroethylene and Polychlorotrifluoroethylene , 1956 .

[25]  Z. Kam,et al.  Absorption and Scattering of Light by Small Particles , 1998 .

[26]  P. Richards,et al.  Molecule-substrate vibration of CO on Ni(100) studied by infrared-emission spectroscopy , 1984 .

[27]  J. Scott,et al.  Longitudinal and Transverse Optical Lattice Vibrations in Quartz , 1967 .

[28]  J. K. Barr Spectral emissivity by interferometric spectroscopy , 1969 .

[29]  C. M Hargreaves,et al.  Anomalous radiative transfer between closely-spaced bodies , 1969 .

[30]  E. Korte,et al.  Infrared reststrahlen revisited: commonly disregarded optical details related to n<1 , 2005, Analytical and bioanalytical chemistry.

[31]  M. Hove,et al.  Theory of Radiative Heat Transfer between Closely Spaced Bodies , 1971 .

[32]  R. Moynihan The Molecular Structure of Perfluorocarbon Polymers. Infrared Studies on Polytetrafluoroethylene1 , 1959 .

[33]  R. Carminati,et al.  Near-field spectral effects due to electromagnetic surface excitations , 2000, Physical review letters.

[34]  D. A. Kleinman,et al.  Infrared Lattice Bands of Quartz , 1961 .

[35]  Jean-Jacques Greffet,et al.  Thermal radiation scanning tunnelling microscopy , 2006, Nature.

[36]  S Stringari,et al.  Measurement of the temperature dependence of the Casimir-Polder force. , 2007, Physical review letters.

[37]  F. Keilmann,et al.  Phonon-enhanced light–matter interaction at the nanometre scale , 2002, Nature.

[38]  F. Keilmann,et al.  Near-field microscopy by elastic light scattering from a tip , 2004, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[39]  S. Komiyama,et al.  A sensitive near-field microscope for thermal radiation. , 2010, The Review of scientific instruments.