Environmental Controls on Canopy Foliar N Distributions in a Neotropical Lowland

32 Distributions of foliar nutrients across forest canopies can give insight into their plant functional 33 diversity and improve our understanding of biogeochemical cycling. We used airborne remote 34 sensing and Partial Least Squares Regression (PLSR) to quantify canopy foliar nitrogen (N) 35 across ~164 km 2 the mechanisms and feedbacks involved, and how 51 shifts in climate may translate to changes in forest function.

[1]  Roberta E. Martin,et al.  Convergent elevation trends in canopy chemical traits of tropical forests , 2016, Global change biology.

[2]  Gregory Asner,et al.  Organismic-Scale Remote Sensing of Canopy Foliar Traits in Lowland Tropical Forests , 2016, Remote. Sens..

[3]  Clayton C. Kingdon,et al.  Spectroscopic determination of leaf morphological and biochemical traits for northern temperate and boreal tree species. , 2014, Ecological applications : a publication of the Ecological Society of America.

[4]  Benjamin L Turner,et al.  Soil microbial nutrient constraints along a tropical forest elevation gradient: a belowground test of a biogeochemical paradigm , 2015 .

[5]  Roberta E. Martin,et al.  Landscape-Scale Controls on Aboveground Forest Carbon Stocks on the Osa Peninsula, Costa Rica , 2015, PloS one.

[6]  G. Asner,et al.  Mapping tropical forest carbon: Calibrating plot estimates to a simple LiDAR metric , 2014 .

[7]  Roberta E. Martin,et al.  Spectroscopy of canopy chemicals in humid tropical forests , 2011 .

[8]  W. Wieder,et al.  Throughfall exclusion and leaf litter addition drive higher rates of soil nitrous oxide emissions from a lowland wet tropical forest , 2011 .

[9]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[10]  D. Hölscher,et al.  Early effect of elevated nitrogen input on above-ground net primary production of a lower montane rain forest, Panama , 2009, Journal of Tropical Ecology.

[11]  P. Baumgartner,et al.  Late Cretaceous to Miocene seamount accretion and mélange formation in the Osa and Burica Peninsulas (Southern Costa Rica): episodic growth of a convergent margin , 2009 .

[12]  J. Ehleringer,et al.  Understanding the Influences of Spatial Patterns on N Availability Within the Brazilian Amazon Forest , 2008, Ecosystems.

[13]  J Elith,et al.  A working guide to boosted regression trees. , 2008, The Journal of animal ecology.

[14]  Roberta E. Martin,et al.  Carnegie Airborne Observatory: in-flight fusion of hyperspectral imaging and waveform light detection and ranging for three-dimensional studies of ecosystems , 2007 .

[15]  N. Higuchi,et al.  Variation in aboveground tree live biomass in a central Amazonian Forest: Effects of soil and topography , 2006 .

[16]  C. Lévi-Strauss,et al.  Experimental investigation , 2013 .

[17]  Graeme T. Hastwell,et al.  Nutrient Cycling and Limitation: Hawaii as a Model System , 2005 .

[18]  P. Reich,et al.  Global patterns of plant leaf N and P in relation to temperature and latitude. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[19]  P. Vitousek,et al.  Elevational and age gradients in hawaiian montane rainforest: foliar and soil nutrients , 1988, Oecologia.

[20]  Stephen Porder,et al.  Erosion and landscape development affect plant nutrient status in the Hawaiian Islands , 2004, Oecologia.

[21]  Jerome H Friedman,et al.  Multiple additive regression trees with application in epidemiology , 2003, Statistics in medicine.

[22]  Edward A. G. Schuur,et al.  PRODUCTIVITY AND GLOBAL CLIMATE REVISITED: THE SENSITIVITY OF TROPICAL FOREST GROWTH TO PRECIPITATION , 2003 .

[23]  A. Austin,et al.  Global patterns of the isotopic composition of soil and plant nitrogen , 2003 .

[24]  Chein-I Chang,et al.  Hyperspectral Imaging , 2003, Springer US.

[25]  K. Kitayama,et al.  Ecosystem structure and productivity of tropical rain forests along altitudinal gradients with contrasting soil phosphorus pools on Mount Kinabalu, Borneo , 2002 .

[26]  P. Matson,et al.  Net primary productivity and nutrient cycling across a mesic to wet precipitation gradient in Hawaiian montane forest , 2001, Oecologia.

[27]  Neil Gale The Relationship between Canopy Gaps and Topography in a Western Ecuadorian Rain Forest1 , 2000 .

[28]  Peter M. Vitousek,et al.  EXPERIMENTAL INVESTIGATION OF NUTRIENT LIMITATION OF FOREST GROWTH ON WET TROPICAL MOUNTAINS , 1998 .

[29]  L. Bruijnzeel,et al.  CLIMATIC CONDITIONS AND TROPICAL MONTANE FOREST PRODUCTIVITY: THE FOG HAS NOT LIFTED YET , 1998 .

[30]  P. Grubb Control of Forest Growth and Distribution on Wet Tropical Mountains: with Special Reference to Mineral Nutrition , 1977 .

[31]  J. Syers,et al.  The fate of phosphorus during pedogenesis , 1976 .

[32]  T. Whitmore,et al.  A Comparison of Montane and Lowland Forest in Ecuador: III. The Light Reaching the Ground Vegetation , 1967 .

[33]  L. Holdridge Life zone ecology. , 1967 .

[34]  T. C. Whitmore,et al.  A Comparison of Montane and Lowland Rain Forest in Ecuador I. The Forest Structure, Physiognomy, and Floristics , 1963 .