Tinjuan Pustaka Sistematis - Sistem Rekomendasi Menggunakan Collaborative Filtering

Pemanfaatan bigdata pada era industry 4.0 telah banyak diterapkan diberbagai bidang untuk membuat sebuah sistem rekomendasi, salah satunya pada bidang bisnis. Collaborative Filtering merupakan salah satu metode yang banyak digunakan pada saat ini untuk menghasilkan sebuah rekomendasi produk. Graph Database pada saat ini sudah menjadi pilihan yang banyak dikombinasikan dengan penggunaan metode Collaborative Filtering. Tujuan dari makalah ini adalah sebagai systematic literatur review untuk menentukan sebuah sistem rekomendasi dengan menggabungkan metode rekomendasi dengan database grafik. Hasil penelitian ini menjawab pertanyaan penelitian (Research Question) sebagai berikut. RQ1: Apakah penggunakan sistem rekomendasi dengan algoritma collaborative filtering mengalami peningkatan? RQ2: Apasajakah fokus dan tujuan penelitian dengan menggunakan collaborative filtering? RQ3: Sub-disiplin ilmu apa yang sering menggunakan collaborative filtering? Sebagai hasil dari tinjauan pustaka, 42 jurnal dipilih sebagai bahan Analisa yang diterbitkan antara tahun 2014 sampai dengan 2019. Hasil penelitian menunjukkan adanya keakuratan tingkat rekomendasi dari metode dan algoritma yang digunakan, dan menjawab pertanyaan selanjutnya (RQ2 dan RQ3). Kata kunci: Sistem Rekomendasi, Collaborative Filtering, Graph Database

[1]  Xin Chen,et al.  A Hybrid Recommendation Model Based on Weighted Bipartite Graph and Collaborative Filtering , 2016, 2016 IEEE/WIC/ACM International Conference on Web Intelligence Workshops (WIW).

[2]  Edi Winarko,et al.  Implementation of multi-criteria collaborative filtering on cluster using Apache Spark , 2016, 2016 2nd International Conference on Science and Technology-Computer (ICST).

[3]  Indra Budi,et al.  Two-steps graph-based collaborative filtering using user and item similarities: Case study of E-commerce recommender systems , 2017, 2017 International Conference on Data and Software Engineering (ICoDSE).

[4]  Jakarin Chawachat,et al.  Content-Based Filtering Recommendation in Abstract Search Using Neo4j , 2017, 2017 21st International Computer Science and Engineering Conference (ICSEC).

[5]  Chuanhe Huang,et al.  Goods recommendation based on retail knowledge in a Neo4j graph database combined with an inference mechanism implemented in jess , 2017, 2017 IEEE SmartWorld, Ubiquitous Intelligence & Computing, Advanced & Trusted Computed, Scalable Computing & Communications, Cloud & Big Data Computing, Internet of People and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/SCI).

[6]  Bo Sun,et al.  An Improved Collaborative Filtering Recommendation Algorithm Incorporating Opinions Analysis , 2015, 2015 7th International Conference on Intelligent Human-Machine Systems and Cybernetics.

[7]  Xingyu Wu,et al.  Using Collaborative Filtering Algorithms Combined with Doc2Vec for Movie Recommendation , 2019, 2019 IEEE 3rd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC).

[8]  Bin Luo,et al.  Recommendation Scheme via Improved Iteratively Collaborative Filtering Algorithm with Neighborhood Scale Research , 2013, 2013 International Conference on Computational and Information Sciences.

[9]  Jun Zheng,et al.  A Combined Predictor for Item-Based Collaborative Filtering , 2013, 2013 5th International Conference on Intelligent Networking and Collaborative Systems.

[10]  V. P,et al.  Performance Evaluation of Ensemble based Collaborative Filtering Recommender System , 2019, 2019 IEEE International Conference on System, Computation, Automation and Networking (ICSCAN).

[11]  Shulin Liu,et al.  An Improved Collaborative Filtering Recommendation Algorithm , 2016 .

[12]  Ashish Sharma,et al.  Enhancing the Accuracy of Movie Recommendation System Based on Probabilistic Data Structure and Graph Database , 2015, 2015 Fifth International Conference on Advances in Computing and Communications (ICACC).

[13]  Anand Shanker Tewari,et al.  Book recommendation system based on collaborative filtering and association rule mining for college students , 2014, 2014 International Conference on Contemporary Computing and Informatics (IC3I).

[14]  Jayant Gadge,et al.  Performance analysis of recommendation system based on collaborative filtering and demographics , 2015, 2015 International Conference on Communication, Information & Computing Technology (ICCICT).