Nanoscale 3D structures towards improved cell-chip coupling on microelectrode arrays

The human brain is a highly interconnected system, consisting of about 86 billion neurons, [1] each forming on average 7,000 connections to neighboring cells. [2]While neuroscientists have achieved various breakthroughs elucidating the underlying principles of neuronal communication in the past decades, the goal of an in-depth understanding of the complex events involved in network communication and processes such as learning remains unattained. One approach often employed to reduce the complexity and thereby facilitate high-resolution studies of the cellular interaction is the application of microelectrode arrays (MEAs). They enable the in vitro investigation of small neuronal networks, yielding correlated data of the cellular activity with high temporal resolution. However, MEAs suffer from inherently low signal amplitudes due to a loose cell-chip contact and thus insufficient coupling between the cellular signals and the electrode. In the past decade, threedimensional electrode designs have been extensively studied as possible solution for the problem of low signal amplitudes during MEA-based investigations of electrogenic cells. They improve the cell-chip coupling through the establishment of a tighter interface between biology and electronics. However, while many different 3D designs have been suggested in the literature, the requirements for a direct comparison of the recording capabilities yielded by the different structures have so far not been met. The aim of this body of work therefore is the development of an approach allowing for the parallel fabrication of multiple different 3D designs on a single chip and thus parallel testing on the biological system. In the first part of this thesis, electron-beam lithography is employed in conjunction with electrodeposition for a parallelized preparation of thousands of 3D structures on gold-onsilicon substrates. In this manner, the common 3D geometries as reported in the literature pillars, hollow pillars, and mushroom-shaped structures are produced. Furthermore, hollow mushrooms are developed as novel 3D design. The interaction of the structures with both cardiomyocyte-like HL-1 cells as well as rat cortical neurons is investigated. In the second part of this thesis, the developed 3D structures are transferred onto MEAs. A thorough investigation of the galvanization procedure yields parameters that enable the real-time control of the nanoscale structure size during the electrodeposition process. In this way, 3D electrodes of different shape and size can be prepared on a single MEA and thus be investigated simultaneously with respect to their interaction with electrogenic cells. Electrophysiological studies are performed employing cardiomyocyte-like HL-1 cells as model system. Furthermore, various modifications of the 3D structures are discussed, aiming at improved electrical characteristics for future investigations. In conclusion, this body of work presents a well-controlled process for the preparation of 3D structures onMEAs, thereby facilitating the preparation of multiple different three-dimensional designs on a single chip. This forms the basis for an in-depth characterization of the improvement of the cell-chip coupling yielded by the different 3D designs. Zusammenfassung Das menschliche Gehirn besteht aus ca. 86 Milliarden Nervenzellen, [1] welche jeweils rund 7.000 Verbindungen zu benachbartenNeuronen bilden. [2]Während die Neurowissenschaften in den letzten Jahrzehnten bedeutende Fortschritte im Bereich der Grundlagen neuronaler Kommunikation erzielt haben, bleibt das detaillierte Verständnis der Aktivität und Interaktion dieses komplexen Systems ein unerreichtes Ziel. Ein häufig verwendeter Ansatz zur Reduktion der Komplexität und somit der Untersuchung grundsätzlicher Mechanismen, ist die Verwendung von Mikroelektrodenarrays (MEAs), welche es ermöglichen, kleinere neuronale Netzwerke in vitro zu untersuchen und korrelierte Daten bezüglich der zellulären Aktivität zu erhalten. Ein inhärentes Problem dieses Ansatzes ist jedoch die geringe Effizienz der Signaltransduktion aufgrund des schlechten Kontaktes zwischen Zelle und Elektrode und der daraus folgenden schlechten Zell-Chip Kopplung. Als mögliche Lösung dieses Problems wurden dreidimensionale Elektrodenstrukturen im letzten Jahrzehnt intensiv erforscht, da sie aufgrund eines engen Kontaktes zur Zelle das biologische Signal besser erfassen. Während die Zahl der wissenschaftlichen Studien in diesem Bereich stetig wächst, fehlt jedoch bislang eine Methodik, welche die Voraussetzungen für einen direkten Vergleich der verschiedenen Strukturen schafft. Ziel dieser Dissertation ist somit die Entwicklung eines Fabrikationsweges, der eine gut kontrollierbare Herstellung verschiedenster 3D Strukturen auf MEAs ermöglicht. Dazu werden mittels Elektrodeposition zunächst tausende Strukturen in einem parallelisierten Ansatz hergestellt und somit die nötigen Parameter für die Fabrikation ermittelt. Neben den in der Literatur bekannten pilz-, zylinderund hohlzylinder-förmigen 3D Designs werden hohle Pilze als neuartige 3D Elektrode entwickelt. Ferner wird die Interaktion einer kardiomyozytenartigen Zelllinie sowie kortikaler Neuronen mit den entwickelten Strukturen untersucht. Im Folgenden werden die Strukturen auf MEAs übertragen. Eine genaue Charakterisierung der Strukturherstellung ermöglicht die Etablierung eines gut kontrollierbaren Prozesses, durch den die Größe der Nanostrukturen während der Fabrikation in Echtzeit angepasst werden kann. Auf diese Weise ist es möglich, Strukturen verschiedenster Form und Größe auf einem einzelnen MEA darzustellen und somit simultan am biologischen System zu untersuchen. Anschließend wird die Verbesserung der Signaltransduktion zwischen Elektronik und elektrisch erregbaren Herzmuskelzellen aufgrund der entwickelten 3D Strukturen erforscht. Abschließend werden diverse Modifikationen thematisiert, welche zur Verbesserung der elektrischen Eigenschaften der 3D Strukturen herangezogen werden können. Zusammenfassend ermöglicht die hier entwickelte, gut kontrollierbare Darstellung verschiedenster 3D Strukturen auf einem einzelnen MEA eine parallelisierte Untersuchung der Strukturen. Damit legt diese Arbeit den Grundstein für eine bessere Untersuchung des Einflusses dreidimensionaler Elektrodenstrukturen auf die Signaltransduktion von Mikroelektrodenarrays.

[1]  L. Hepler,et al.  Thermochemistry and oxidation potentials of the platinum group metals and their compounds , 1968 .

[2]  A. M. Feltham,et al.  Platinized platinum electrodes , 1971 .

[3]  G. Loeb,et al.  A miniature microelectrode array to monitor the bioelectric activity of cultured cells. , 1972, Experimental cell research.

[4]  B. Sakmann,et al.  Single-channel currents recorded from membrane of denervated frog muscle fibres , 1976, Nature.

[5]  E. Dennis,et al.  The size, shape, and hydration of nonionic surfactant micelles. Triton X-100 , 1977 .

[6]  N. Kaplan,et al.  Antineoplastic activity of poly(L-lysine) with some ascites tumor cells. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[7]  J. Pine Recording action potentials from cultured neurons with extracellular microcircuit electrodes , 1980, Journal of Neuroscience Methods.

[8]  H. H. Paradies Shape and size of a nonionic surfactant micelle. Triton X-100 in aqueous solution , 1980 .

[9]  S. P. Moulik,et al.  Physicochemical studies on the characterization of Triton X 100 micelles in an aqueous environment and in the presence of additives , 1980 .

[10]  F. Grinnell,et al.  Adsorption characteristics of plasma fibronectin in relationship to biological activity. , 1981, Journal of biomedical materials research.

[11]  Guenter W. Gross,et al.  Recording of spontaneous activity with photoetched microelectrode surfaces from mouse spinal neurons in culture , 1982, Journal of Neuroscience Methods.

[12]  W. Shier,et al.  Polycations as prostaglandin synthesis inducers. Stimulation of arachidonic acid release and prostaglandin synthesis in cultured fibroblasts by poly(L-lysine) and other synthetic polycations. , 1984, Biochimica et biophysica acta.

[13]  R G Mark,et al.  An array of microelectrodes to stimulate and record from cardiac cells in culture. , 1984, The American journal of physiology.

[14]  G. Tiller,et al.  Hydrogenation of triton X-100 eliminates its fluorescence and ultraviolet light absorption while preserving its detergent properties. , 1984, Analytical biochemistry.

[15]  P. Wilkinson,et al.  Understanding gold plating , 1986 .

[16]  C. Wilkinson,et al.  An extracellular microelectrode array for monitoring electrogenic cells in culture. , 1990, Biosensors & bioelectronics.

[17]  A. Hodgkin,et al.  A quantitative description of membrane current and its application to conduction and excitation in nerve , 1990 .

[18]  P. Fromherz,et al.  A neuron-silicon junction: a Retzius cell of the leech on an insulated-gate field-effect transistor. , 1991, Science.

[19]  John J. Bozzola,et al.  Electron microscopy : principles and techniques for biologists , 1992 .

[20]  G. Richardson,et al.  Ototoxicity in vitro: effects of neomycin, gentamicin, dihydrostreptomycin, amikacin, spectinomycin, neamine, spermine and poly-l-lysine , 1994, Hearing Research.

[21]  H. Shih,et al.  Anatomy of the action potential in the heart. , 1994, Texas Heart Institute journal.

[22]  P. Connolly,et al.  Advantages of using microfabricated extracellular electrodes for in vitro neuronal recording , 1995, Journal of neuroscience research.

[23]  G. Staikov,et al.  Electrochemical phase formation and growth : an introduction to the initial stages of metal deposition , 1996 .

[24]  Martin Jenkner,et al.  BISTABILITV OF MEMBRANE CONDUCTANCE IN CELL ADHESION OBSERVED IN A NEURON TRANSISTOR , 1997 .

[25]  M. Schlesinger,et al.  Fundamentals of Electrochemical Deposition , 1998 .

[26]  N J Izzo,et al.  HL-1 cells: a cardiac muscle cell line that contracts and retains phenotypic characteristics of the adult cardiomyocyte. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[27]  John A. Kiernan,et al.  Formaldehyde, Formalin, Paraformaldehyde And Glutaraldehyde: What They Are And What They Do , 2000, Microscopy Today.

[28]  D. Shah,et al.  On the measurement of critical micelle concentrations of pure and technical-grade nonionic surfactants , 2000 .

[29]  E. Budevski,et al.  Electrocrystallization: Nucleation and growth phenomena , 2000 .

[30]  Dieter Braun,et al.  Adhesion proteins for a tight neuron–electrode contact , 2001, Journal of Neuroscience Methods.

[31]  Arleen Richardson,et al.  Protocols for Neural Cell Culture , 1992, Humana Press.

[32]  S. Schultz Principles of Neural Science, 4th ed. , 2001 .

[33]  C. C. Ruiz,et al.  Thermodynamic and Structural Studies of Triton X-100 Micelles in Ethylene Glycol−Water Mixed Solvents , 2001 .

[34]  David C. Martin,et al.  Electrochemical deposition and characterization of poly(3,4-ethylenedioxythiophene) on neural microelectrode arrays , 2003 .

[35]  J. Gehl,et al.  Electroporation: theory and methods, perspectives for drug delivery, gene therapy and research. , 2003, Acta physiologica Scandinavica.

[36]  David C. Martin,et al.  Fuzzy gold electrodes for lowering impedance and improving adhesion with electrodeposited conducting polymer films , 2003 .

[37]  Hermann Berg,et al.  Electroanalytical Methods. Guide to Experiments and Applications: F. Scholz (editor) Springer Verlag, Berlin, 2002, ISBN: 3-540-42229-3, XXII+331 pages, €69.95, US$69.95 , 2003 .

[38]  M. D. Rooij,et al.  Electrochemical Methods: Fundamentals and Applications , 2003 .

[39]  Peter Fromherz,et al.  Neuroelectronic Interfacing: Semiconductor Chips with Ion Channels, Nerve Cells, and Brain , 2012 .

[40]  J. Molina-Bolívar,et al.  Effect of ethylene glycol on the thermodynamic and micellar properties of Tween 20 , 2003 .

[41]  B. Sakmann,et al.  Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches , 1981, Pflügers Archiv.

[42]  S Moein Moghimi,et al.  Low and high molecular weight poly(l‐lysine)s/poly(l‐lysine)–DNA complexes initiate mitochondrial‐mediated apoptosis differently , 2005, FEBS letters.

[43]  D. Drachman Do we have brain to spare? , 2005, Neurology.

[44]  Annalisa Bucchi,et al.  Physiology and pharmacology of the cardiac pacemaker ("funny") current. , 2005, Pharmacology & therapeutics.

[45]  C. Koch,et al.  On the origin of the extracellular action potential waveform: A modeling study. , 2006, Journal of neurophysiology.

[46]  A. Gomes,et al.  Zn electrodeposition in the presence of surfactants: Part I. Voltammetric and structural studies , 2006 .

[47]  S. Hafizovic,et al.  CMOS microelectrode array for bidirectional interaction with neuronal networks , 2006, IEEE Journal of Solid-State Circuits.

[48]  C. Mele,et al.  Time-dependent in situ SERS study of CN− adsorbed on gold , 2006 .

[49]  Daryl R. Kipke,et al.  Optimization of Microelectrode Design for Cortical Recording Based on Thermal Noise Considerations , 2006, 2006 International Conference of the IEEE Engineering in Medicine and Biology Society.

[50]  J. Shappir,et al.  Improved Neuronal Adhesion to the Surface of Electronic Device by Engulfment of Protruding Micro-Nails Fabricated on the Chip Surface , 2007, TRANSDUCERS 2007 - 2007 International Solid-State Sensors, Actuators and Microsystems Conference.

[51]  S. Ingebrandt,et al.  Influence of the first amplifier stage in MEA systems on extracellular signal shapes. , 2007, Biosensors & bioelectronics.

[52]  M. Swash,et al.  The phagocytic capacity of neurones , 2007, The European journal of neuroscience.

[53]  T. Green,et al.  Gold electrodeposition for microelectronic, optoelectronic and microsystem applications , 2007 .

[54]  N. Munichandraiah,et al.  The Effect of Nonionic Surfactant Triton X-100 during Electrochemical Deposition of MnO2 on Its Capacitance Properties , 2007 .

[55]  Andreas Offenhäusser,et al.  Transmission electron microscopy study of the cell–sensor interface , 2008, Journal of The Royal Society Interface.

[56]  B. Bean The action potential in mammalian central neurons , 2007, Nature Reviews Neuroscience.

[57]  Shlomo Yitzchaik,et al.  Reversible transition of extracellular field potential recordings to intracellular recordings of action potentials generated by neurons grown on transistors. , 2008, Biosensors & bioelectronics.

[58]  G. Wilcox,et al.  Tin–Manganese Alloy Electrodeposits II. Corrosion Performance Studies , 2008 .

[59]  Yusuf Leblebici,et al.  An electrical model of the cell-electrode interface for high-density microelectrode arrays , 2008, 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[60]  Stefano Geuna,et al.  A simple protocol for paraffin‐embedded myelin sheath staining with osmium tetroxide for light microscope observation , 2008, Microscopy research and technique.

[61]  Matthew C. Dixon,et al.  Quartz crystal microbalance with dissipation monitoring: enabling real-time characterization of biological materials and their interactions. , 2008, Journal of biomolecular techniques : JBT.

[62]  S. Upadhyay,et al.  Kinetics of oxidation of non-ionic surfactants (Triton X-100 and Brij-35) by KMnO₄ in H₂SO₄ medium , 2008 .

[63]  Parveen Kumar,et al.  Oxidative degradation of non-ionic surfactant (TritonX-100) by chromium(VI) , 2008 .

[64]  Carmen Bartic,et al.  Spine-shaped gold protrusions improve the adherence and electrical coupling of neurons with the surface of micro-electronic devices , 2009, Journal of The Royal Society Interface.

[65]  R. Merkel,et al.  Diffusion and intermembrane distance: case study of avidin and E-cadherin mediated adhesion. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[66]  Yusuf Leblebici,et al.  Electrical modeling of the cell-electrode interface for recording neural activity from high-density microelectrode arrays , 2009, Neurocomputing.

[67]  Frederico A. C. Azevedo,et al.  Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled‐up primate brain , 2009, The Journal of comparative neurology.

[68]  J. Shappir,et al.  Changing gears from chemical adhesion of cells to flat substrata toward engulfment of micro-protrusions by active mechanisms , 2009, Journal of neural engineering.

[69]  Amir Ayali,et al.  Process entanglement as a neuronal anchorage mechanism to rough surfaces , 2009, Nanotechnology.

[70]  C. Xin Innovative approaches to anti-arrhythmic drug therapy , 2009 .

[71]  E. Ben-Jacob,et al.  Engineered neuronal circuits shaped and interfaced with carbon nanotube microelectrode arrays , 2009, Biomedical microdevices.

[72]  J. Shappir,et al.  In-cell recordings by extracellular microelectrodes , 2010, Nature Methods.

[73]  J. Shappir,et al.  Long-term, multisite, parallel, in-cell recording and stimulation by an array of extracellular microelectrodes. , 2010, Journal of neurophysiology.

[74]  Daryl R. Kipke,et al.  Conducting-polymer nanotubes improve electrical properties, mechanical adhesion, neural attachment, and neurite outgrowth of neural electrodes. , 2010, Small.

[75]  N. Melosh,et al.  Dynamic actuation using nano-bio interfaces , 2010 .

[76]  Martin L Yarmush,et al.  The fabrication of low-impedance nanoporous gold multiple-electrode arrays for neural electrophysiology studies , 2010, Nanotechnology.

[77]  Nicholas A. Melosh,et al.  Gigaohm resistance membrane seals with stealth probe electrodes , 2010 .

[78]  Sejin Park,et al.  Nanoporous Pt Microelectrode for Neural Stimulation and Recording: In Vitro Characterization , 2010 .

[79]  N. Melosh,et al.  Fusion of biomimetic stealth probes into lipid bilayer cores , 2010, Proceedings of the National Academy of Sciences.

[80]  O. Inganäs,et al.  Electroactive polymers for neural interfaces , 2010 .

[81]  Charles M. Lieber,et al.  Three-Dimensional, Flexible Nanoscale Field-Effect Transistors as Localized Bioprobes , 2010, Science.

[82]  N. Hersch,et al.  Novel fusogenic liposomes for fluorescent cell labeling and membrane modification. , 2010, Bioconjugate chemistry.

[83]  D. Mayer,et al.  Low impedance surface coatings via nanopillars and conductive polymers , 2011 .

[84]  J. Shappir,et al.  Formation of Essential Ultrastructural Interface between Cultured Hippocampal Cells and Gold Mushroom-Shaped MEA- Toward “IN-CELL” Recordings from Vertebrate Neurons , 2011, Front. Neuroeng..

[85]  N. Melosh,et al.  Molecular structure influences the stability of membrane penetrating biointerfaces. , 2011, Nano letters.

[86]  Paul A. Kohl,et al.  Electrodeposition of Gold , 2011 .

[87]  Boris Hofmann,et al.  Nanocavity electrode array for recording from electrogenic cells. , 2011, Lab on a chip.

[88]  Yoonkey Nam,et al.  In vitro microelectrode array technology and neural recordings. , 2011, Critical reviews in biomedical engineering.

[89]  A. Offenhäusser,et al.  Fabrication of gold micro-spine structures for improvement of cell/device adhesion , 2011 .

[90]  B Wolfrum,et al.  Nanostructured gold microelectrodes for extracellular recording from electrogenic cells , 2011, Nanotechnology.

[91]  Jacob T. Robinson,et al.  Vertical nanowire electrode arrays as a scalable platform for intracellular interfacing to neuronal circuits. , 2012, Nature nanotechnology.

[92]  Chong Xie,et al.  Characterization of the cell-nanopillar interface by transmission electron microscopy. , 2012, Nano letters.

[93]  Boris Hofmann,et al.  Frequency-dependent signal transfer at the interface between electrogenic cells and nanocavity electrodes. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[94]  David L Kaplan,et al.  Elasticity maps of living neurons measured by combined fluorescence and atomic force microscopy. , 2012, Biophysical journal.

[95]  Blaise Yvert,et al.  Nanostructuration strategies to enhance microelectrode array (MEA) performance for neuronal recording and stimulation , 2012, Journal of Physiology-Paris.

[96]  B. Cui,et al.  Intracellular Recording of Action Potentials by Nanopillar Electroporation , 2012, Nature nanotechnology.

[97]  Micha E. Spira,et al.  Toward on-chip, in-cell recordings from cultured cardiomyocytes by arrays of gold mushroom-shaped microelectrodes , 2012, Front. Neuroeng..

[98]  D. Mayer,et al.  A nanoporous alumina microelectrode array for functional cell–chip coupling , 2012, Nanotechnology.

[99]  Karel Vytras,et al.  Combined macro-/mesoporous microelectrode arrays for low-noise extracellular recording of neural networks. , 2012, Journal of neurophysiology.

[100]  Aviad Hai,et al.  On-chip electroporation, membrane repair dynamics and transient in-cell recordings by arrays of gold mushroom-shaped microelectrodes. , 2012, Lab on a chip.

[101]  M. Spira,et al.  Multi-electrode array technologies for neuroscience and cardiology. , 2013, Nature nanotechnology.

[102]  Mario Malerba,et al.  3D hollow nanostructures as building blocks for multifunctional plasmonics. , 2013, Nano letters.

[103]  Yael Hanein,et al.  Carbon nanotube-based multi electrode arrays for neuronal interfacing: progress and prospects , 2013, Front. Neural Circuits.

[104]  A. Offenhäusser,et al.  On chip guidance and recording of cardiomyocytes with 3D mushroom-shaped electrodes. , 2013, Nano letters.

[105]  K. Healy,et al.  Effect of avidin-like proteins and biotin modification on mesenchymal stem cell adhesion. , 2013, Biomaterials.

[106]  Matthew R Angle,et al.  Mechanical model of vertical nanowire cell penetration. , 2013, Nano letters.

[107]  Yoonkey Nam,et al.  Novel platinum black electroplating technique improving mechanical stability , 2013, 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC).

[108]  Charles M. Lieber,et al.  Synthetic nanoelectronic probes for biological cells and tissues. , 2013, Annual review of analytical chemistry.

[109]  K. Mølhave,et al.  Fibroblasts Cultured on Nanowires Exhibit Low Motility, Impaired Cell Division, and DNA Damage , 2013, Small.

[110]  U. Frey,et al.  Tracking axonal action potential propagation on a high-density microelectrode array across hundreds of sites , 2013, Nature Communications.

[111]  F. Gu,et al.  Responses of Staphylococcus aureus bacterial cells to nanocrystalline nickel nanostructures. , 2014, Biomaterials.

[112]  B. Cui,et al.  Iridium Oxide Nanotube Electrodes for Highly Sensitive and Prolonged Intracellular Measurement of Action Potentials , 2014, Nature Communications.

[113]  Gerhard Gompper,et al.  Interfacing electrogenic cells with 3D nanoelectrodes: position, shape, and size matter. , 2014, ACS nano.

[114]  Fang Zhang,et al.  Reference and counter electrode positions affect electrochemical characterization of bioanodes in different bioelectrochemical systems , 2014, Biotechnology and bioengineering.

[115]  Yael Hanein,et al.  All-carbon-nanotube flexible multi-electrode array for neuronal recording and stimulation , 2014, Biomedical microdevices.

[116]  A. Baró,et al.  Surface-charge differentiation of streptavidin and avidin by atomic force microscopy-force spectroscopy. , 2014, Chemphyschem : a European journal of chemical physics and physical chemistry.

[117]  Amin Aalipour,et al.  Quantification of nanowire penetration into living cells , 2014, Nature Communications.

[118]  Guy C. Brown,et al.  Microglial phagocytosis of live neurons , 2014, Nature Reviews Neuroscience.

[119]  Rae-Young Kim,et al.  Recent trends in microelectrode array technology for in vitro neural interface platform , 2014, Biomedical Engineering Letters.

[120]  Baoyang Lu,et al.  Electropolymerization of 3,4-Ethylenedithiathiophene in the Green Binary Solvent System of Water and Ethanol , 2014, International Journal of Electrochemical Science.

[121]  N. Melosh,et al.  Plasma membrane and actin cytoskeleton as synergistic barriers to nanowire cell penetration. , 2014, Langmuir : the ACS journal of surfaces and colloids.

[122]  Andreas Offenhäusser,et al.  Fabrication of MEA‐based nanocavity sensor arrays for extracellular recording of action potentials , 2014 .

[123]  J. Brocard,et al.  Nanoscale surface topography reshapes neuronal growth in culture. , 2014, Langmuir : the ACS journal of surfaces and colloids.

[124]  H. Kano,et al.  Label-free measurement of cell-electrode cleft gap distance with high spatial resolution surface plasmon microscopy. , 2014, ACS nano.

[125]  K. Kyriacou,et al.  Elasticity Measurements from Left Ventricular Murine HL-1 Cardiomyocytes using Atomic Force Microscopy , 2015 .

[126]  Sang-Don Jung,et al.  In vitro extracellular recording and stimulation performance of nanoporous gold-modified multi-electrode arrays , 2015, Journal of neural engineering.

[127]  Matthew R Angle,et al.  Nanotechnology and neurophysiology , 2015, Current Opinion in Neurobiology.

[128]  Silviya M. Ojovan,et al.  A feasibility study of multi-site,intracellular recordings from mammalian neurons by extracellular gold mushroom-shaped microelectrodes , 2015, Scientific Reports.

[129]  D. Mayer,et al.  Electrochemical current rectification-a novel signal amplification strategy for highly sensitive and selective aptamer-based biosensor. , 2015, Biosensors & bioelectronics.

[130]  C. Akerman,et al.  Ion dynamics during seizures , 2015, Front. Cell. Neurosci..

[131]  L. Berdondini,et al.  3D plasmonic nanoantennas integrated with MEA biosensors. , 2015, Nanoscale.

[132]  Christopher A. R. Chapman,et al.  Nanoporous gold as a neural interface coating: effects of topography, surface chemistry, and feature size. , 2015, ACS applied materials & interfaces.

[133]  Y. Nam,et al.  Electrochemical layer-by-layer approach to fabricate mechanically stable platinum black microelectrodes using a mussel-inspired polydopamine adhesive. , 2015, Journal of neural engineering.

[134]  A. Offenhäusser,et al.  Nanostructured cavity devices for extracellular stimulation of HL-1 cells. , 2015, Nanoscale.

[135]  Douglas J. Bakkum,et al.  Revealing neuronal function through microelectrode array recordings , 2015, Front. Neurosci..

[136]  Luca Berdondini,et al.  Multifunctional biosensing with three-dimensional plasmonic nanoantennas , 2015, Microtechnologies for the New Millennium.

[137]  Ning-hua Liu,et al.  Application of avidin-biotin technology to improve cell adhesion on nanofibrous matrices , 2015, Journal of Nanobiotechnology.

[138]  Xinming Li,et al.  Organic bioelectronics for neural interfaces , 2015 .

[139]  Christopher J. Tassone,et al.  Structural control of mixed ionic and electronic transport in conducting polymers , 2016, Nature Communications.

[140]  J. A. Varela,et al.  Shielded Coaxial Optrode Arrays for Neurophysiology , 2016, Front. Neurosci..

[141]  Micha E. Spira,et al.  On-chip, multisite extracellular and intracellular recordings from primary cultured skeletal myotubes , 2016, Scientific Reports.

[142]  C. Dalton,et al.  A novel bio-mimicking, planar nano-edge microelectrode enables enhanced long-term neural recording , 2016, Scientific reports.

[143]  Silviya M. Ojovan,et al.  Multisite electrophysiological recordings by self-assembled loose-patch-like junctions between cultured hippocampal neurons and mushroom-shaped microelectrodes , 2016, Scientific Reports.

[144]  A. Offenhäusser,et al.  An evaluation of extracellular MEA versus optogenetic stimulation of cortical neurons , 2016 .

[145]  Yusran Sulaiman,et al.  Effect of electropolymerization potential on the preparation of PEDOT/graphene oxide hybrid material for supercapacitor application , 2016 .

[146]  Sang-Don Jung,et al.  Electrochemical and in vitro neuronal recording characteristics of multi-electrode arrays surface-modified with electro-co-deposited gold-platinum nanoparticles , 2016, Biomedical microdevices.

[147]  D. Mayer,et al.  Ultra‐thin resin embedding method for scanning electron microscopy of individual cells on high and low aspect ratio 3D nanostructures , 2016, Journal of microscopy.

[148]  Andreas Offenhäusser,et al.  Electrochemically triggered aptamer immobilization via click reaction for vascular endothelial growth factor detection , 2016 .

[149]  P. Renaud,et al.  Biomimetic surface patterning for long-term transmembrane access , 2016, Scientific Reports.

[150]  A. Offenhäusser,et al.  MEAs and 3D nanoelectrodes: electrodeposition as tool for a precisely controlled nanofabrication , 2017, Nanotechnology.

[151]  HNF-Helmholtz Nano Facility Forschungszentrum Jülich GmbH , 2017 .

[152]  K. Riaz,et al.  Electric field enhanced 3D scalable low-voltage nano-spike electroporation system , 2017 .

[153]  Sang Heon Lee,et al.  High Density Individually Addressable Nanowire Arrays Record Intracellular Activity from Primary Rodent and Human Stem Cell Derived Neurons. , 2017, Nano letters.