Light types for polynomial time computation in lambda-calculus

We propose a new type system for lambda-calculus ensuring that well-typed programs can be executed in polynomial time: dual light affine logic (DIAL). DIAL has a simple type language with a linear and an intuitionistic type arrow, and one modality. It corresponds to a fragment of light affine logic (LAL). We show that contrarily to LAL, DIAL ensures good properties on lambda-terms: subject reduction is satisfied and a well-typed term admits a polynomial bound on the reduction by any strategy. Finally we establish that as LAL, DIAL allows to represent all polytime functions.

[1]  François Maurel Nondeterministic Light Logics and NP-Time , 2003, TLCA.

[2]  Ugo Dal Lago,et al.  Elementary Affine Logic and the Call-by-Value Lambda Calculus , 2005, TLCA.

[3]  Patrick Baillot Type inference for light affine logic via constraints on words , 2004, Theor. Comput. Sci..

[4]  Martin Hofmann,et al.  Quantitative Models and Implicit Complexity , 2005, FSTTCS.

[5]  Nick Benton,et al.  A Mixed Linear and Non-Linear Logic: Proofs, Terms and Models (Extended Abstract) , 1994, CSL.

[6]  Andrzej S. Murawski,et al.  On an interpretation of safe recursion in light affine logic , 2004, Theor. Comput. Sci..

[7]  Valeria de Paiva,et al.  On an Intuitionistic Modal Logic , 2000, Stud Logica.

[8]  Paolo Coppola,et al.  Optimizing optimal reduction: A type inference algorithm for elementary affine logic , 2006, TOCL.

[9]  Paolo Coppola,et al.  Principal Typing in Elementary Affine Logic , 2003, TLCA.

[10]  Martin Hofmann Safe recursion with higher types and BCK-algebra , 2000, Ann. Pure Appl. Log..

[11]  Jean-Yves Girard,et al.  Light Linear Logic , 1998, Inf. Comput..

[12]  Andrea Asperti,et al.  Intuitionistic Light Affine Logic , 2002, TOCL.

[13]  Yves Lafont,et al.  Soft linear logic and polynomial time , 2004, Theor. Comput. Sci..

[14]  Gordon Plotkin,et al.  Type Theory and Recursion Extended Abstract , 2003, LICS 2003.

[15]  Daniel Leivant,et al.  Calibrating computational feasibility by abstraction rank , 2002, Proceedings 17th Annual IEEE Symposium on Logic in Computer Science.

[16]  Patrick Baillot Checking Polynomial Time Complexity with Types , 2002, IFIP TCS.

[17]  Aleksy Schubert The Complexity of beta-Reduction in Low Orders , 2001, TLCA.

[18]  Andrew Barber,et al.  Dual Intuitionistic Linear Logic , 1996 .

[19]  Martin Hofmann,et al.  Static prediction of heap space usage for first-order functional programs , 2003, POPL '03.

[20]  Patrick Baillot Stratified coherence spaces: a denotational semantics for light linear logic , 2004, Theor. Comput. Sci..

[21]  Helmut Schwichtenberg,et al.  Higher type recursion, ramification and polynomial time , 2000, Ann. Pure Appl. Log..

[22]  Nick Benton,et al.  A Term Calculus for Intuitionistic Linear Logic , 1993, TLCA.

[23]  Paolo Coppola,et al.  Typing Lambda Terms in Elementary Logic with Linear Constraints , 2001, TLCA.

[24]  Andrea Asperti Light affine logic , 1998, Proceedings. Thirteenth Annual IEEE Symposium on Logic in Computer Science (Cat. No.98CB36226).

[25]  Paolo Coppola,et al.  Principal Typing for Lambda Calculus in Elementary Affine Logic , 2004, Fundam. Informaticae.

[26]  Martin Hofmann Linear types and non-size-increasing polynomial time computation , 2003, Inf. Comput..

[27]  Patrick Baillot,et al.  Elementary Complexity and Geometry of Interaction , 1999, Fundam. Informaticae.

[28]  Vincent Danos,et al.  On the linear decoration of intuitionistic derivations , 1995, Arch. Math. Log..

[29]  Stephen A. Cook,et al.  A new recursion-theoretic characterization of the polytime functions , 1992, STOC '92.

[30]  Kazushige Terui,et al.  Light affine lambda calculus and polytime strong normalization , 2001, Proceedings 16th Annual IEEE Symposium on Logic in Computer Science.

[31]  Kazushige Terui Light Affine Set Theory: A Naive Set Theory of Polynomial Time , 2004, Stud Logica.

[32]  Kazushige Terui,et al.  A Feasible Algorithm for Typing in Elementary Affine Logic , 2005, TLCA.

[33]  Paris C. Kanellakis,et al.  On the expressive power of simply typed and let-polymorphic lambda calculi , 1996, Proceedings 11th Annual IEEE Symposium on Logic in Computer Science.

[34]  Masahito Hasegawa,et al.  Classical linear logic of implications , 2002, Mathematical Structures in Computer Science.

[35]  F. Pfenning,et al.  On a Modal λ-Calculus for S41 1This work is supported by NSF Grant CCR-9303383 and the Advanced Research Projects Agency under ARPA Order No. 8313. , 1995 .