A direct estimation of high dimensional stationary vector autoregressions
暂无分享,去创建一个
Fang Han | Han Liu | Huanran Lu | Han Liu | Fang Han | Huanran Lu
[1] C. Sims. MACROECONOMICS AND REALITY , 1977 .
[2] Po-Ling Loh,et al. High-dimensional regression with noisy and missing data: Provable guarantees with non-convexity , 2011, NIPS.
[3] P. Massart,et al. Concentration inequalities and model selection , 2007 .
[4] N. Meinshausen,et al. High-dimensional graphs and variable selection with the Lasso , 2006, math/0608017.
[5] Charles R. Johnson,et al. Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.
[6] R. C. Bradley. Basic properties of strong mixing conditions. A survey and some open questions , 2005, math/0511078.
[7] A. Kock,et al. Oracle Inequalities for High Dimensional Vector Autoregressions , 2012, 1311.0811.
[8] T. Cai,et al. A Constrained ℓ1 Minimization Approach to Sparse Precision Matrix Estimation , 2011, 1102.2233.
[9] Ruey S. Tsay,et al. Analysis of Financial Time Series , 2005 .
[10] Han Liu,et al. Joint estimation of multiple graphical models from high dimensional time series , 2013, Journal of the Royal Statistical Society. Series B, Statistical methodology.
[11] H. Zou. The Adaptive Lasso and Its Oracle Properties , 2006 .
[12] Ziv Bar-Joseph,et al. Analyzing time series gene expression data , 2004, Bioinform..
[13] Martin J. Wainwright,et al. Sharp Thresholds for High-Dimensional and Noisy Sparsity Recovery Using $\ell _{1}$ -Constrained Quadratic Programming (Lasso) , 2009, IEEE Transactions on Information Theory.
[14] DE CS.TU-BERLIN.,et al. Sparse Causal Discovery in Multivariate Time Series , 2010 .
[15] P. Bickel,et al. Covariance regularization by thresholding , 2009, 0901.3079.
[16] P. Bickel,et al. Large Vector Auto Regressions , 2011, 1106.3915.
[17] P. Bickel,et al. Regularized estimation of large covariance matrices , 2008, 0803.1909.
[18] Olivier Ledoit,et al. Improved estimation of the covariance matrix of stock returns with an application to portfolio selection , 2003 .
[19] Fang Han,et al. Transition Matrix Estimation in High Dimensional Time Series , 2013, ICML.
[20] Peng Zhao,et al. On Model Selection Consistency of Lasso , 2006, J. Mach. Learn. Res..
[21] Harrison H. Zhou,et al. Optimal rates of convergence for covariance matrix estimation , 2010, 1010.3866.
[22] J. H. Ahlberg,et al. Convergence Properties of the Spline Fit , 1963 .
[23] Chih-Ling Tsai,et al. Regression coefficient and autoregressive order shrinkage and selection via the lasso , 2007 .
[24] Y. Nardi,et al. Autoregressive process modeling via the Lasso procedure , 2008, J. Multivar. Anal..
[25] Larry A. Wasserman,et al. High Dimensional Semiparametric Gaussian Copula Graphical Models. , 2012, ICML 2012.
[26] J. Varah. A lower bound for the smallest singular value of a matrix , 1975 .
[27] Karl J. Friston,et al. Modelling Geometric Deformations in Epi Time Series , 2022 .
[28] Trevor Hastie,et al. Regularization Paths for Generalized Linear Models via Coordinate Descent. , 2010, Journal of statistical software.
[29] J. Friedman,et al. Predicting Multivariate Responses in Multiple Linear Regression , 1997 .
[30] Lester Melie-García,et al. Estimating brain functional connectivity with sparse multivariate autoregression , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.
[31] Helmut Ltkepohl,et al. New Introduction to Multiple Time Series Analysis , 2007 .
[32] Martin J. Wainwright,et al. Minimax Rates of Estimation for High-Dimensional Linear Regression Over $\ell_q$ -Balls , 2009, IEEE Transactions on Information Theory.
[33] Jing Lei,et al. Minimax Rates of Estimation for Sparse PCA in High Dimensions , 2012, AISTATS.
[34] Wolfgang Härdle,et al. Generalized Dynamic Semi�?Parametric Factor Models for High�?Dimensional Non�?Stationary Time Series , 2014 .
[35] R. C. Bradley. Basic Properties of Strong Mixing Conditions , 1985 .
[36] Andrea Montanari,et al. Learning Networks of Stochastic Differential Equations , 2010, NIPS.
[37] Richard J. Klimoski,et al. Handbook of psychology: Industrial and organizational psychology, Vol. 12. , 2003 .
[38] M. D. Dunnette. Handbook of Industrial and Organizational Psychology , 2005 .
[39] Ming Yuan,et al. High Dimensional Inverse Covariance Matrix Estimation via Linear Programming , 2010, J. Mach. Learn. Res..
[40] Anders Bredahl Kock,et al. On the Oracle Property of the Adaptive Lasso in Stationary and Nonstationary Autoregressions , 2012 .
[41] James D. Hamilton. Time Series Analysis , 1994 .
[42] Xiaoming Yuan,et al. The flare package for high dimensional linear regression and precision matrix estimation in R , 2020, J. Mach. Learn. Res..
[43] Yuval Rabani,et al. Linear Programming , 2007, Handbook of Approximation Algorithms and Metaheuristics.
[44] Wolfgang Härdle,et al. High Dimensional Nonstationary Time Series Modelling with Generalized Dynamic Semiparametric Factor Model , 2010 .
[45] Nan-Jung Hsu,et al. Subset selection for vector autoregressive processes using Lasso , 2008, Comput. Stat. Data Anal..
[46] P. Bickel,et al. SIMULTANEOUS ANALYSIS OF LASSO AND DANTZIG SELECTOR , 2008, 0801.1095.
[47] Terence Tao,et al. The Dantzig selector: Statistical estimation when P is much larger than n , 2005, math/0506081.
[48] Naoki Abe,et al. Grouped graphical Granger modeling for gene expression regulatory networks discovery , 2009, Bioinform..
[49] C. Granger. Investigating causal relations by econometric models and cross-spectral methods , 1969 .
[50] Martin J. Wainwright,et al. Estimation of (near) low-rank matrices with noise and high-dimensional scaling , 2009, ICML.
[51] Ali Shojaie,et al. Discovering graphical Granger causality using the truncating lasso penalty , 2010, Bioinform..