Use of graphite as a highly reversible electrode with superior cycle life for sodium-ion batteries by making use of co-intercalation phenomena.

Although being the standard anode material in lithium-ion batteries (LIBs), graphite so far is considered to fail application in sodium-ion batteries (NIBs) because the Na-C system lacks suitable binary intercalation compounds. Here we show that this limitation can be circumvented by using co-intercalation phenomena in a diglyme-based electrolyte. The resulting compound is a stage-I ternary intercalation compound with an estimated stoichiometry of Na(diglyme)2C20. Highlights of the electrode reaction are its high energy efficiency, the small irreversible loss during the first cycle, and a superior cycle life with capacities close to 100 mAh g(-1) for 1000 cycles and coulomb efficiencies >99.87%. A one-to-one comparison with the analogue lithium-based cell shows that the sodium-based system performs better and also withstands higher currents.

[1]  M. Winter,et al.  X-ray diffraction studies of the electrochemical intercalation of bis(trifluoromethanesulfonyl)imide anions into graphite for dual-ion cells , 2013 .

[2]  Philipp Adelhelm,et al.  A rechargeable room-temperature sodium superoxide (NaO2) battery. , 2013, Nature materials.

[3]  Petr Novák,et al.  Insertion Electrode Materials for Rechargeable Lithium Batteries , 1998 .

[4]  Donghan Kim,et al.  Sodium‐Ion Batteries , 2013 .

[5]  Teófilo Rojo,et al.  Update on Na-based battery materials. A growing research path , 2013 .

[6]  Christopher P. Rhodes,et al.  Crystalline phases of poly(ethylene oxide) oligomers and sodium triflate: Changes in coordination and conformation with chain length , 2002 .

[7]  H. Fritz,et al.  The Electrochemistry of Black Carbons , 1983 .

[8]  Gerbrand Ceder,et al.  Electrode Materials for Rechargeable Sodium‐Ion Batteries: Potential Alternatives to Current Lithium‐Ion Batteries , 2012 .

[9]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[10]  H. Boehm.,et al.  Observations of staging in the electrochemical intercalation of lithium into graphite from dimethyl sulfoxide solutions , 1991 .

[11]  Philipp Adelhelm,et al.  Conversion reactions for sodium-ion batteries. , 2013, Physical chemistry chemical physics : PCCP.

[12]  Liquan Chen,et al.  Room-temperature stationary sodium-ion batteries for large-scale electric energy storage , 2013 .

[13]  T. Abe,et al.  Correlation Between Cointercalation of Solvents and Electrochemical Intercalation of Lithium into Graphite in Propylene Carbonate Solution , 2003 .

[14]  K. Takeyama,et al.  Li+ adsorption on a metal electrode from glymes , 1998 .

[15]  L. Nazar,et al.  Sodium and sodium-ion energy storage batteries , 2012 .

[16]  Kang Xu,et al.  Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. , 2004, Chemical reviews.

[17]  J. Besenhard The electrochemical preparation and properties of ionic alkali metal-and NR4-graphite intercalation compounds in organic electrolytes , 1976 .

[18]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[19]  R. Setton,et al.  New graphite lamellar compounds , 1968 .

[20]  H. Möhwald,et al.  Electronic conductivity and structure of DMSO-solvated A+ - and NR4+-graphite intercalation compounds , 1980 .

[21]  M. Lerner,et al.  Graphite intercalation of bis(trifluoromethanesulfonyl) imide and other anions with perfluoroalkanesulfonyl substituents , 1999 .

[22]  J. Sangster,et al.  C-Na (Carbon-Sodium) System , 2007 .

[23]  M. Inagaki,et al.  Effect of ether coordination for sodium intercalation into poly(vinyl chloride) cokes with different graphitization degree , 1998 .

[24]  W. Henderson,et al.  Glyme-lithium salt phase behavior. , 2006, The journal of physical chemistry. B.

[25]  Hideki Nakayama,et al.  First-principles study of alkali metal-graphite intercalation compounds , 2012 .

[26]  H. Fritz,et al.  Elektrochemie schwarzer Kohlenstoffe , 2006 .

[27]  J. Besenhard,et al.  15. Lithiated Carbons , 2011 .

[28]  B. Scrosati,et al.  Advances in lithium-ion batteries , 2002 .

[29]  D Carlier,et al.  Electrochemical investigation of the P2–NaxCoO2 phase diagram. , 2011, Nature materials.

[30]  S. Tobishima,et al.  Glyme-based nonaqueous electrolytes for rechargeable lithium cells , 2004 .

[31]  W. Rüdorff Einlagerungsverbindungen mit Alkali‐ und Erdalkalimetallen , 1959 .

[32]  Patrik Johansson,et al.  Ionic liquid based electrolytes for sodium-ion batteries: Na+ solvation and ionic conductivity , 2014 .

[33]  J. Besenhard,et al.  Cathodic reduction of graphite in organic solutions of alkali and NR4+ salts , 1974 .

[34]  M. Inagaki,et al.  Determining factors for the intercalation into carbon materials from organic solutions , 2001 .

[35]  Doron Aurbach,et al.  The study of electrolyte solutions based on solvents from the “glyme” family (linear polyethers) for secondary Li battery systems , 1997 .

[36]  T. Abe,et al.  Creation of nanospaces by intercalation of alkali metals into graphite in organic solutions , 2001 .