Aeolus winds impact on volcanic ash early warning systems for aviation

[1]  L. Isaksen,et al.  The impact of Aeolus wind retrievals on ECMWF global weather forecasts , 2021, Quarterly Journal of the Royal Meteorological Society.

[2]  Gaetana Ganci,et al.  Anatomy of a Paroxysmal Lava Fountain at Etna Volcano: The Case of the 12 March 2021, Episode , 2021, Remote. Sens..

[3]  M. D. Laurentis,et al.  ESA'S Wind Mission Aeolus - Overview, Status and Outlook , 2021, 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS.

[4]  L. Bugliaro,et al.  Modelling the volcanic ash plume from Eyjafjallajökull eruption (May 2010) over Europe: evaluation of the benefit of source term improvements and of the assimilation of aerosol measurements , 2021, Natural Hazards and Earth System Sciences.

[5]  O. Reitebuch,et al.  Validation of Aeolus winds using radiosonde observations and numerical weather prediction model equivalents , 2021 .

[6]  Oleg Dubovik,et al.  The Potential of GRASP/GARRLiC Retrievals for Dust Aerosol Model Evaluation: Case Study during the PreTECT Campaign , 2021, Remote. Sens..

[7]  L. Mona,et al.  Investigation of Volcanic Emissions in the Mediterranean: “The Etna–Antikythera Connection” , 2020, Atmosphere.

[8]  Tsengdar J. Lee,et al.  Wind Profile Satellite Observation Requirements and Capabilities , 2020 .

[9]  Luca Merucci,et al.  Near-Real-Time Tephra Fallout Assessment at Mt. Etna, Italy , 2019, Remote. Sens..

[10]  Jasper R. Lewis,et al.  Advancements in the Aerosol Robotic Network (AERONET) Version 3 database – automated near-real-time quality control algorithm with improved cloud screening for Sun photometer aerosol optical depth (AOD) measurements , 2019, Atmospheric Measurement Techniques.

[11]  A. Prata,et al.  Calculating and communicating ensemble‐based volcanic ash dosage and concentration risk for aviation , 2018, Meteorological Applications.

[12]  Luca Merucci,et al.  Proximal Monitoring of the 2011–2015 Etna Lava Fountains Using MSG-SEVIRI Data , 2018 .

[13]  H. Dacre,et al.  Characterizing the Atmospheric Conditions Leading to Large Error Growth in Volcanic Ash Cloud Forecasts , 2018 .

[14]  D. Karoly,et al.  Climate extremes in Europe at 1.5 and 2 degrees of global warming , 2017 .

[15]  Gudmundur F. Ulfarsson,et al.  Cooperation Between Science and Aviation-Sector Service Providers in Europe for Risk Management of Volcanic Ash , 2017 .

[16]  A. Ansmann,et al.  Potential of polarization/Raman lidar to separate fine dust, coarse dust, maritime, and anthropogenic aerosol profiles , 2017 .

[17]  Klaus Scipal,et al.  Scientific Developments and the EPS-SG Scatterometer , 2017, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[18]  Dominik Brunner,et al.  The Lagrangian particle dispersion model FLEXPART version 10.4 , 2017, Geoscientific Model Development.

[19]  Ulla Wandinger,et al.  Target categorization of aerosol and clouds by continuous multiwavelength-polarization lidar measurements , 2017 .

[20]  Albert Ansmann,et al.  The automated multiwavelength Raman polarization and water-vapor lidar PollyXT: The neXT generation , 2016 .

[21]  Ulla Wandinger,et al.  EARLINET Single Calculus Chain - overview on methodology and strategy , 2015 .

[22]  Martin Weissmann,et al.  Height Correction of Atmospheric Motion Vectors Using Satellite Lidar Observations from CALIPSO , 2014 .

[23]  Gerhard Wotawa,et al.  The Lagrangian particle dispersion model FLEXPART-WRF version 3.1 , 2013 .

[24]  P. Seifert,et al.  Evaluation of the Lidar/Radiometer Inversion Code (LIRIC) to determine microphysical properties of volcanic and desert dust , 2013 .

[25]  Nicola Spinelli,et al.  Lidar depolarization measurement of fresh volcanic ash from Mt. Etna, Italy , 2012 .

[26]  P. Seifert,et al.  Profiling of fine and coarse particle mass: case studies of Saharan dust and Eyjafjallajökull/Grimsvötn volcanic plumes , 2012 .

[27]  Costanza Bonadonna,et al.  Improving on mass flow rate estimates of volcanic eruptions , 2012 .

[28]  Ad Stoffelen,et al.  Assimilation of High-Resolution Mode-S Wind and Temperature Observations in a Regional NWP Model for Nowcasting Applications , 2012 .

[29]  Reinhard Niessner,et al.  Conductivity for soot sensing: possibilities and limitations. , 2012, Analytical chemistry.

[30]  Yuqing Wang,et al.  Improved Representation of Boundary Layer Clouds over the Southeast Pacific in ARW-WRF Using a Modified Tiedtke Cumulus Parameterization Scheme* , 2011 .

[31]  P. Rairoux,et al.  Atmospheric non‐spherical particles optical properties from UV‐polarization lidar and scattering matrix , 2011 .

[32]  Albert Ansmann,et al.  Saharan Mineral Dust Experiments SAMUM–1 and SAMUM–2: what have we learned? , 2011 .

[33]  Ad Stoffelen,et al.  Comparison of wind and wind shear climatologies derived from high‐resolution radiosondes and the ECMWF model , 2010 .

[34]  Steven R Albersheim,et al.  The United States national volcanic ash operations plan for aviation , 2009 .

[35]  Alfred J Prata,et al.  Satellite detection of hazardous volcanic clouds and the risk to global air traffic , 2009 .

[36]  Larry G. Mastin,et al.  A multidisciplinary effort to assign realistic source parameters to models of volcanic ash-cloud transport and dispersion during eruptions , 2009 .

[37]  G. Thompson,et al.  Explicit Forecasts of Winter Precipitation Using an Improved Bulk Microphysics Scheme. Part II: Implementation of a New Snow Parameterization , 2008 .

[38]  W. Collins,et al.  Radiative forcing by long‐lived greenhouse gases: Calculations with the AER radiative transfer models , 2008 .

[39]  Ad Stoffelen,et al.  Impact assessment of prospective spaceborne Doppler wind lidar observation scenarios , 2008 .

[40]  I. Jankowiak,et al.  PHOTONS/AERONET sunphotometer network overview: description, activities, results , 2007, Atmospheric and Ocean Optics.

[41]  Ad Stoffelen,et al.  ADM‐Aeolus Doppler wind lidar Observing System Simulation Experiment , 2006 .

[42]  Jean-François Léon,et al.  Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust , 2006 .

[43]  A. Stohl,et al.  Technical note: The Lagrangian particle dispersion model FLEXPART version 6.2 , 2005 .

[44]  G. Gallina,et al.  Volcanic-ash hazard to aviation during the 2003–2004 eruptive activity of Anatahan volcano, Commonwealth of the Northern Mariana Islands , 2005 .

[45]  David G. H. Tan,et al.  Simulation of the yield and accuracy of wind profile measurements from the Atmospheric Dynamics Mission (ADM‐Aeolus) , 2005 .

[46]  T. Eck,et al.  Variability of Absorption and Optical Properties of Key Aerosol Types Observed in Worldwide Locations , 2002 .

[47]  M. Drinkwater,et al.  The advanced scatterometer (ASCAT) on the meteorological operational (MetOp) platform: A follow on for European wind scatterometers , 2002 .

[48]  T. Eck,et al.  An emerging ground-based aerosol climatology: Aerosol optical depth from AERONET , 2001 .

[49]  J. Dudhia,et al.  Coupling an Advanced Land Surface–Hydrology Model with the Penn State–NCAR MM5 Modeling System. Part I: Model Implementation and Sensitivity , 2001 .

[50]  Michael D. King,et al.  A flexible inversion algorithm for retrieval of aerosol optical properties from Sun and sky radiance measurements , 2000 .

[51]  G. Smirnov,et al.  Possibilities and Limitations , 1970 .

[52]  Jimy Dudhia,et al.  A Description of the Advanced Research WRF Model Version 4 , 2019 .

[53]  C. Fearnley,et al.  Observing the Volcano World: Volcano Crisis Communication , 2018 .

[54]  R. Clarkson,et al.  Maximising Airspace Use During Volcanic Eruptions: Matching Engine Durability against Ash Cloud Occurrence , 2017 .

[55]  R. Dare,et al.  Ensemble Prediction of the Dispersion of Volcanic Ash from the 13 February 2014 Eruption of Kelut, Indonesia , 2016 .

[56]  Stephan Rahm,et al.  Influence of airborne Doppler wind lidar profiles near Typhoon Sinlaku on ECMWF and NOGAPS forecasts , 2012 .

[57]  N. Bormann,et al.  Atmospheric Motion Vector observations in the ECMWF system: Second year report , 2012 .

[58]  A. Stoffelen,et al.  DOPPLER WIND LIDAR MEASUREMENTS SCENARIOS IN THE TROPICS , 2007 .

[59]  G. Collins The next generation. , 2006, Scientific American.

[60]  J. Streicher,et al.  Lidar: Range-Resolved Optical Remote Sensing of the Atmosphere , 2005 .

[61]  Z. Janjic A nonhydrostatic model based on a new approach , 2002 .

[62]  Zaviša I. Janić Nonsingular implementation of the Mellor-Yamada level 2.5 scheme in the NCEP Meso model , 2001 .

[63]  Deng-How Tsaur,et al.  Third year report , 1994 .

[64]  Lennart Thaning,et al.  On the Settling Velocity in a Nonstationary Atmosphere , 1991 .