Lattice-theoretical fixpoint theorems in morphological image filtering
暂无分享,去创建一个
[1] M. E. Munroe,et al. Measure and integration , 1954 .
[2] René Lalement,et al. Logique, réduction, résolution , 1990 .
[3] E. Stein,et al. Introduction to Fourier Analysis on Euclidean Spaces. , 1971 .
[4] J. Van Leeuwen,et al. Handbook of theoretical computer science - Part A: Algorithms and complexity; Part B: Formal models and semantics , 1990 .
[5] Henk J. A. M. Heijmans,et al. The algebraic basis of mathematical morphology. I Dilations and erosions , 1990, Comput. Vis. Graph. Image Process..
[6] W. Rudin. Real and complex analysis , 1968 .
[7] K. Hofmann,et al. A Compendium of Continuous Lattices , 1980 .
[8] Henk J. A. M. Heijmans,et al. The algebraic basis of mathematical morphology : II. Openings and closings , 1991, CVGIP Image Underst..
[9] Jean Serra,et al. Image Analysis and Mathematical Morphology , 1983 .
[10] Jan van Leeuwen,et al. Handbook of Theoretical Computer Science, Vol. B: Formal Models and Semantics , 1994 .
[11] Jacob E. Goodman,et al. On the largest convex polygon contained in a non-convex n-gon, or how to peel a potato , 1981 .
[12] A. Davis,et al. A characterization of complete lattices , 1955 .
[13] Stephen J. Willson. Convergence of iterated median rules , 1989, Comput. Vis. Graph. Image Process..
[14] Henk J. A. M. Heijmans,et al. Convergence, continuity, and iteration in mathematical morphology , 1992, J. Vis. Commun. Image Represent..
[15] A. Tarski. A LATTICE-THEORETICAL FIXPOINT THEOREM AND ITS APPLICATIONS , 1955 .
[16] H.J.A.M. Heijmans. Iterations of morphological transformations , 1989 .
[17] Henk J. A. M. Heijmans. Morphological filtering and iteration , 1990, Other Conferences.