Relative Nondeterministic Information Logic is EXPTIME-complete

We define a relative version of the logic NIL introduced by Orlowska, Pawlak and Vakarelov and we show that its satisfiability is not only decidable but also EXPTIME-complete. Such a logic combines two ingredients that are seldom present simultaneously in information logics: frame conditions involving more than one information relation and relative frames. The EXPTIME upper bound is obtained by designing a well-suited decision procedure based on the nonemptiness problem of Buchi automata on infinite trees. The paper provides evidence that Buchi automata on infinite trees are crucial language acceptors even for relative information logics with multiple types of relations.

[1]  Dimiter Vakarelov,et al.  Information Systems, Similarity Relations and Modal Logics , 1998 .

[2]  Ulrike Sattler,et al.  The Complexity of Reasoning with Boolean Modal Logics , 2000, Advances in Modal Logic.

[3]  Dov M. Gabbay,et al.  On Modal Logics Characterized by Models with Relative Accessibility Relations: Part I , 2000, Stud Logica.

[4]  Dimiter Vakarelov Abstract Characterization of some Knowledge Representation Systems and the Logic NIL of Nondeterministic Information , 1986, AIMSA.

[5]  Ewa Orlowska,et al.  Representation of Nondeterministic Information , 1984, Theor. Comput. Sci..

[6]  Julius T. Tou,et al.  Information Systems , 1973, GI Jahrestagung.

[7]  M. Rabin Weakly Definable Relations and Special Automata , 1970 .

[8]  Richard E. Ladner,et al.  Propositional Dynamic Logic of Regular Programs , 1979, J. Comput. Syst. Sci..

[9]  I-Peng Lin,et al.  The Complexity of Propositional Modal Theories and the Complexity of Consistency of Propositional Modal Theories , 1994, LFCS.

[10]  Edith Hemaspaandra,et al.  The Price of Universality , 1996, Notre Dame J. Formal Log..

[11]  Philippe Balbiani,et al.  A hierarchy of modal logics with relative accessibility relations , 1999, J. Appl. Non Class. Logics.

[12]  Richard E. Ladner,et al.  The Computational Complexity of Provability in Systems of Modal Propositional Logic , 1977, SIAM J. Comput..

[13]  Ewa Orlowska,et al.  A logic of indiscernibility relations , 1984, Symposium on Computation Theory.

[14]  Dimiter Vakarelov,et al.  Modal Logics for Knowledge Representation Systems , 1989, Theor. Comput. Sci..

[15]  J. Stepaniuk Rough Relations and Logics , 1998 .

[16]  Victor W. Marek,et al.  Information Storage and Retrieval Systems: Mathematical Foundations , 1976, Theor. Comput. Sci..

[17]  Jorge Lobo,et al.  Modal logics for knowledge representation systems , 1991 .

[18]  Stéphane Demri,et al.  Automata-Theoretic Decision Procedures for Information Logics , 2002, Fundam. Informaticae.

[19]  Beata Konikowska,et al.  A Logic for Reasoning about Similarity , 1998 .

[20]  Philippe Balbiani Modal Logics with Relative Accessibility Relations , 1996, FAPR.

[21]  Stéphane Demri,et al.  Incomplete Information: Structure, Inference, Complexity , 2002, Monographs in Theoretical Computer Science An EATCS Series.

[22]  Zdzisław Pawlak,et al.  Mathematical foundations of information storage and retrieval. part 2 , 1973 .

[23]  Beata Konikowska,et al.  A Logic for Reasoning about Relative Similarity , 1997, Stud Logica.

[24]  Stéphane Demri,et al.  The Nondeterministic Information Logic NIL is PSPACE-complete , 2000, Fundam. Informaticae.

[25]  Stéphane Demri,et al.  Relative Similarity Logics are Decidable: Reduction to FO2 with Equality , 1998, JELIA.

[26]  Pierre Wolper,et al.  Automata theoretic techniques for modal logics of programs: (Extended abstract) , 1984, STOC '84.

[27]  E. Allen Emerson,et al.  The Complexity of Tree Automata and Logics of Programs , 1999, SIAM J. Comput..

[28]  J. Kacprzyk,et al.  Incomplete Information: Rough Set Analysis , 1997 .

[29]  Lech Polkowski,et al.  Rough Sets in Knowledge Discovery 2 , 1998 .

[30]  Ewa Orlowska,et al.  Semantics of Vague Concepts , 1985 .

[31]  Zdzislaw Pawlak,et al.  Information systems theoretical foundations , 1981, Inf. Syst..