124-Color Super-resolution Imaging by Engineering DNA-PAINT Blinking Kinetics

Optical super-resolution techniques reach unprecedented spatial resolution down to a few nanometers. However, efficient multiplexing strategies for the simultaneous detection of hundreds of molecular species are still elusive. Here, we introduce an entirely new approach to multiplexed super-resolution microscopy by designing the blinking behavior of targets with engineered binding frequency and duration in DNA-PAINT. We assay this kinetic barcoding approach in silico and in vitro using DNA origami structures, show the applicability for multiplexed RNA and protein detection in cells, and finally experimentally demonstrate 124-plex super-resolution imaging within minutes.

[1]  Maximilian T. Strauss,et al.  Multiplexed 3D super-resolution imaging of whole cells using spinning disk confocal microscopy and DNA-PAINT , 2017, Nature Communications.

[2]  William M. Shih,et al.  Single-Molecule Clocks Controlled by Serial Chemical Reactions. , 2017, Nano letters.

[3]  S. Hell,et al.  Fluorescence nanoscopy in cell biology , 2017, Nature Reviews Molecular Cell Biology.

[4]  Maximilian T. Strauss,et al.  Super-resolution microscopy with DNA-PAINT , 2017, Nature Protocols.

[5]  Michael W. Davidson,et al.  Applying systems-level spectral imaging and analysis to reveal the organelle interactome , 2017, Nature.

[6]  Peng Yin,et al.  Universal Super-Resolution Multiplexing by DNA Exchange. , 2017, Angewandte Chemie.

[7]  Edward S Boyden,et al.  Rapid Sequential in Situ Multiplexing With DNA-Exchange-Imaging , 2017, bioRxiv.

[8]  C. Dobson,et al.  Multi-dimensional super-resolution imaging enables surface hydrophobicity mapping , 2016, Nature Communications.

[9]  Maximilian T. Strauss,et al.  DNA nanotechnology and fluorescence applications. , 2016, Current opinion in biotechnology.

[10]  P. Yin,et al.  Optical visualisation of individual biomolecules in densely packed clusters , 2016, Nature Nanotechnology.

[11]  Johannes B. Woehrstein,et al.  Quantitative Super-Resolution Imaging with qPAINT using Transient Binding Analysis , 2016, Nature Methods.

[12]  Alberto Diaspro,et al.  The 2015 super-resolution microscopy roadmap , 2015, Journal of Physics D: Applied Physics.

[13]  Ke Xu,et al.  Ultrahigh-throughput single-molecule spectroscopy and spectrally resolved super-resolution microscopy , 2015, Nature Methods.

[14]  Keith A. Lidke,et al.  Sequential Superresolution Imaging of Multiple Targets Using a Single Fluorophore , 2015, PloS one.

[15]  T. G. Martin,et al.  Facile and Scalable Preparation of Pure and Dense DNA Origami Solutions , 2014, Angewandte Chemie.

[16]  Johnny Tam,et al.  Cross-Talk-Free Multi-Color STORM Imaging Using a Single Fluorophore , 2014, PloS one.

[17]  Johannes B. Woehrstein,et al.  Multiplexed 3D Cellular Super-Resolution Imaging with DNA-PAINT and Exchange-PAINT , 2014, Nature Methods.

[18]  Ricardo J. G. B. Campello,et al.  Density-Based Clustering Based on Hierarchical Density Estimates , 2013, PAKDD.

[19]  X. Zhuang,et al.  Actin, Spectrin, and Associated Proteins Form a Periodic Cytoskeletal Structure in Axons , 2013, Science.

[20]  Long Cai,et al.  Single cell systems biology by super-resolution imaging and combinatorial labeling , 2012, Nature Methods.

[21]  Mark Bates,et al.  Multicolor Super-Resolution Fluorescence Imaging via Multi-Parameter Fluorophore Detection , 2011, Chemphyschem : a European journal of chemical physics and physical chemistry.

[22]  Mark Bates,et al.  Evaluation of fluorophores for optimal performance in localization-based super-resolution imaging , 2011, Nature Methods.

[23]  Michael W. Davidson,et al.  Nanoscale architecture of integrin-based cell adhesions , 2010, Nature.

[24]  F. Simmel,et al.  Single-molecule kinetics and super-resolution microscopy by fluorescence imaging of transient binding on DNA origami. , 2010, Nano letters.

[25]  Scott A. Rifkin,et al.  Imaging individual mRNA molecules using multiple singly labeled probes , 2008, Nature Methods.

[26]  P. Rothemund Folding DNA to create nanoscale shapes and patterns , 2006, Nature.

[27]  J. Elf,et al.  BIOPHYSICS: Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes , 2017 .

[28]  P. Mendes,et al.  Bioinformatics Original Paper Copasi—a Complex Pathway Simulator , 2022 .