Prospects for detecting the diffuse supernova neutrino background with JUNO
暂无分享,去创建一个
Zheng Wang | W. He | Y. Liu | Xiaoping Zhou | C. Cerna | Tao Zhang | Wei Wang | C. Wiebusch | Junjie Cao | F. Gao | Honglin Zhuang | Wei Jiang | C. Taille | R. Leitner | D. Orestano | F. Petrucci | V. Vorobel | Nan Zhou | S. Blyth | K. Zhu | M. Dracos | I. Lippi | B. Clerbaux | A. Stahl | C. Tuvè | Y. Hsiung | B. Asavapibhop | N. Suwonjandee | Siguang Wang | X. Huang | Fei Li | Guoqing Zhang | F. Ning | Meifen Wang | Z. Deng | Shubin Liu | Y. Gornushkin | Xianghui Yu | G. Martin-Chassard | Q. An | Jiawen Zhang | Z. Xing | F. Lefèvre | Zhi Wu | M. Ye | M. Wurm | A. Olshevskiy | F. Ortica | I. Mednieks | X. Ji | Qingmin Zhang | Yuhang Guo | D. Auguste | F. Mantovani | B. Caccianiga | M. Giammarchi | P. Lombardi | L. Ludhova | E. Meroni | L. Miramonti | L. Oberauer | G. Ranucci | A. Re | B. Ricci | A. Romani | O. Smirnov | A. Sotnikov | Wenhao Huang | M. Waqas | Z. You | Zhenhai Qian | R. Brugnera | Arsenii Gavrikov | A. Garfagnini | M. Gonchar | Ziyuan Li | Y. Malyshkin | K. Treskov | Jiang Zhu | Francesco Manzali | Zhibing Li | M. Szelezniak | D. Naumov | T. Hu | A. Triossi | W. Baldini | J. Ochoa-Ricoux | N. Giudice | N. Guardone | M. Bellato | F. Corso | R. Othegraven | D. Breton | A. Paoloni | S. Dusini | L. Stanco | Jun Wang | B. Viaud | M. Bongrand | C. Hagner | C. Jollet | L. Kalousis | T. Lachenmaier | B. Lubsandorzhiev | A. Meregaglia | F. Yermia | M. Slupecki | W. Trzaska | K. Loo | M. Qi | D. Blum | R. Ford | J. Andr'e | F. Druillole | M. Mezzetto | J. Steinmann | F. An | H. Gong | G. Lin | I. Nemchenok | N. Raper | X. Ruan | D. Xia | Zepeng Li | A. Chukanov | C. Sirignano | L. Votano | A. Bolshakova | V. Lyashuk | S. Aiello | J. Busto | Xi Wang | Hongbang Liu | Wei-guo Li | G. Gong | Yumei Zhang | Fanrong Xu | Yongzhao Sun | Yifang Wang | Yuguang Xie | Chun-xu Yu | Wei Wei | Xilei Sun | Jiaheng Zou | Shu-lin Liu | Lucinda W. Wang | Jie Zhang | Yu Chen | Huan Yang | Y. Mao | Jun Hu | Qian Liu | Jingyuan Guo | Shujun Zhao | Xiangwei Yin | Yin Xu | Jian Wang | Zhenyu Zhang | Honghao Zhang | Yi Wang | P. Luo | Shun Zhou | Bo-xiang Yu | Z. Ye | Xiao Cai | T. Enqvist | H. Nunokawa | D. Korablev | E. Baussan | V. Antonelli | A. Cammi | Yung-Hsi Chang | D. Chiesa | D. Fan | Jian Fang | H. Gan | M. Guan | Wanlei Guo | Xinheng Guo | Hanxiong Huang | L. Huo | A. Ioannisian | Xiaoshan Jiang | N. Kazarian | P. Kuusiniemi | Weidong Li | Xiao-nan Li | Yi Li | Yufeng Li | T. Lin | Jianglai Liu | Jinchang Liu | Hao-Qi Lu | Junguang Lu | Xubo Ma | S. Mari | E. Previtali | M. Sisti | Y. Sun | C. Volpe | Chung-Hsiang Wang | Guoli Wang | Meng Wang | Ruiguang Wang | zhe wang | Qun Wu | Y. Xi | Ji-lei Xu | B. Yan | Chang-gen Yang | Lei Yang | Zeyuan Yu | L. Zhan | Jingbo Zhang | Jing Zhou | Li Zhou | W. Huo | K. Jen | R. Lei | E. Naumova | E. Doroshkevich | S. Dmitrievsky | J. Maalmi | C. Lombardo | Yadong Wei | S. Hussain | D. Corti | Zhijian Zhang | D. Basilico | A. Budano | S. Limpijumnong | H. Rebber | P. Walker | L. Fan | D. Navas-Nicolás | Wu Luo | Nan Li | A. Giaz | T. Adam | N. Anfimov | A. Brigatti | D. Fedoseev | V. Gromov | P. Hackspacher | S. Jian | S. Lubsandorzhiev | D. Mayilyan | M. Montuschi | M. Nastasi | Z. Ning | S. Parmeggiano | N. Pelliccia | P. Poussot | H. Qiao | B. Ren | B. Roskovec | A. Rybnikov | P. Saggese | J. Sawatzki | A. Selyunin | V. Strati | A. Tietzsch | J. Wurtz | T. Zhao | W. Zhong | Zongyi Wang | Feiyang Zhang | N. Ushakov | M. Buscemi | R. Caruso | M. Settimo | J. Joutsenvaara | M. Torri | Fule Li | Kunyu Wang | F. Luo | Juno collaboration Angel Abusleme | Shakeel Ahmad | M. Akram | G. Andronico | T. Antoshkina | A. Barresi | A. Bergnoli | T. Birkenfeld | S. Blin | C. Bordereau | I. Butorov | Yanke Cai | Z. Cai | A. Campeny | C. Cao | Jinfan Chang | Po-An Chen | Yi-Wen Chen | Zhang Chen | Jie Cheng | P. Chimenti | G. Claverie | C. Clementi | S. C. D. Lorenzo | W. Depnering | M. Diaz | B. Dirgantara | T. Dohnal | G. Donchenko | Jian-Li Dong | M. Dvořák | H. Enzmann | Li Feng | Qichun Feng | A. Fournier | A. Gottel | M. Gu | X. Gu | Yunting Gu | M. Gul | Cong Guo | Yang Han | T. Heinz | P. Hellmuth | R. Herrera | Shaojing Hou | Bei-Zhen Hu | Hang Hu | Jianrun Hu | Zhuojun Hu | Chunhao Huang | Guihong Huang | Yongbo Huang | J. Hui | C. Huss | R. Isocrate | X. Ji | Huihui Jia | R. Jin | X. Jing | S. Jungthawan | P. Kampmann | K. Khosonthongkee | K. Kouzakov | A. Krasnoperov | N. Kutovskiy | C. Landini | S. Leblanc | Jason Leung | Demin Li | Haitao Li | Huiling Li | Jiaqi Li | Mengzhao Li | Qingjiang Li | Ruhui Li | Shanfeng Li | Tao Li | Xinglong Li | A. Limphirat | Shengxin Lin | Haidong Liu | Hongjuan Liu | Hongtao Liu | Hui Liu | Runxuan Liu | Xiaowei Liu | A. Lokhov | Chuan Lu | Shu-ying Lu | G. Luo | Q. Ma | Si Ma | Xiaoyan Ma | F. Marini | S. Marium | C. Martellini | D. Meyhofer | Jonathan Miller | P. Montini | Y. Pei | A. Peng | F. Perrot | P. Petitjean | L. F. P. Rico | A. Popov | W. Pratumwan | Fazhi Qi | X. Qian | S. Qiu | M. Rajput | A. Rebii | M. Roche | N. Rodphai | S. Rujirawat | S. Sanfilippo | A. Sangka | N. Sanguansak | U. Sawangwit | F. Sawy | M. Schever | C. Schwab | K. Schweizer | A. Serafini | G. Settanta | Jingyan Shi | A. Sidorenkov | J. Siripak | M. Smirnov | T. Sogo-Bezerra | J. Songwadhana | B. Soonthornthum | W. Sreethawong | K. Stankevich | H. Steiger | T. Sterr | M. Stock | A. Studenikin | Shifeng Sun | Q. Tang | Q. Tang | Xiao Tang | T. Tměj | G. Troni | G. Vanroyen | V. Vedin | M. Vialkov | Caishen Wang | E. Wang | Wenshuai Wang | Xiangyue Wang | Yangfu Wang | Yaoguang Wang | Yuanqing Wang | Yuman Wang | A. Watcharangkool | Lianghong Wei | S. Wong | B. Wonsak | Diru Wu | C. Wysotzki | Z. Xie | Benda D. Xu | Mei-hang Xu | Yu Xu | Xiong Yan | Anbo Yang | Jie Yang | Xiaoyu Yang | H. Yao | Jiaxuan Ye | P. Yi | Chiye Yu | Hongzhao Yu | Miao Yu | C. Yuan | Ying Yuan | Zhenxiong Yuan | B. Yue | N. Zafar | Shan Zeng | Tingxuan Zeng | Yuda Zeng | Hai-qiong Zhang | Shiqi Zhang | Xuantong Zhang | Yan Zhang | Yiyu Zhang | Yongpeng Zhang | Yuanyuan Zhang | F. Zhao | R. Zhao | D. Zheng | Aiqiang Zhang | Shao-min Chen | G. Cao | D. Voronin | F. vSimkovic | Zhaohan Li | R. Du | Rizwan Ahmed | N. Balashov | R. Bruno | Hao Cai | R. Callegari | Pingping Chen | Xu-Man Chen | Yi-Xin Chen | Yaping Cheng | A. Chetverikov | O. Dalager | Ziyan Deng | Xuefeng Ding | D. Dolzhikov | Shuxian Du | Andrea Fabbri | Wen Fang | M. Fargetta | M. Grassi | Miao He | Beatrice Jelmini | Ignacio Jeria | Junji Jia | Line Kang | Rebin Karaparambil | Amina Khatun | V. Lebrin | Gaosong Li | Min Li | Xiaomei Li | Hao Liang | Jia-Ming Liao | Jiajie Ling | Q. Liu | Xiwen Liu | Yunzhe Liu | A. Lukanov | Shuqin Luo | Xi Luo | B. Ma | R. C. Mandujano | Agnese Martini | M. Mayer | Axel Muller | Minh Hai Nguyen Thi | O. Pilarczyk | Sen Qian | Zhonghua Qin | Jie Ren | M. Rifai | A. Sadovsky | Z. Shao | V. Sharov | A. Shaydurova | Yanan Shi | V. Shutov | S. Sokolov | Ondvrej vSr'amek | D. vStef'anik | Jian Tang | Igor O. Tkachev | G. Verde | Wenlu Wei | K. Wen | L. Wen | Xiaochuan Xie | Chengze Xu | Hangkun Xu | Jing Xu | T. Yan | Wenqi Yan | Cheng-Yu Yang | Yifan Yang | Na Yin | Zezhong Yu | V. Zavadskyi | Peng-Fei Zhang | S. Zhang | Xiaomei Zhang | Xin Zhang | X. Zhang | Hua Zheng | Tong Zhou | Kangfu Zhu | Zhihang Zhu | Bole Zhuang | Liang Zong | A. Cabrera | Jin Zhang | M. Hassan | Shuangyu Liu | Z. Yasin | Jinnan Zhang | Jie Zhao | Fang Liu | Yangheng Zheng | Y. Hor | Yu Zhang | R. Han | Yuekun Heng | X. Mao | C. Vollbrecht | Yinhong Zhang | Yu-Chuang Yan | Jia-Lin Zhang | Jing-qiao Lu | S. Lu | H. Peng | X. Ruan | X. Xiao | Wander Baldini | Ya-Yun Ding | S. Hu | D. Jiang | Zhimin Wang | Yue Meng | Donglian Xu | Xiao-xu Lu | Min Liu | Xinting Huang | A. Khatun | Yayun Ding | Shouyang Hu | Zhang Tao | Jing Xu | Shulin Liu | Jin-Chang Liu | Boxiang Yu | Yu-guang Xie | Shaomin Chen | Jilei Xu | Xurong Chen | Yue-kun Heng | Zi-Yuan Li | Diru Wu | Xuan-tong Zhang | Hongzhao Yu | Xueyao Zhang | Zhuojun Hu | Hongzhao Yu | Yu Xu | Zhe Wang | Benda Xu | A. Stahl | V. Vorobel | S. Du | A. Stahl | Q. Ma | B. Hu | Chengzhuo Yuan | B. Jelmini | Ruiguang Wang
[1] Zheng Wang,et al. Sub-percent Precision Measurement of Neutrino Oscillation Parameters with JUNO , 2022, Chinese Physics C.
[2] M. Wurm,et al. Prospects for the Detection of the Diffuse Supernova Neutrino Background with the Experiments SK-Gd and JUNO , 2022, Universe.
[3] M. Decowski,et al. Limits on Astrophysical Antineutrinos with the KamLAND Experiment , 2021, The Astrophysical Journal.
[4] M. Hartz,et al. Diffuse Supernova Neutrino Background search at Super-Kamiokande with neutron tagging , 2021, Proceedings of 37th International Cosmic Ray Conference — PoS(ICRC2021).
[5] Zheng Wang,et al. JUNO physics and detector , 2021, Progress in Particle and Nuclear Physics.
[6] Zheng Wang,et al. JUNO sensitivity to low energy atmospheric neutrino spectra , 2021, The European Physical Journal C.
[7] L. Wen,et al. Neutral-current background induced by atmospheric neutrinos at large liquid-scintillator detectors. II. Methodology for in situ measurements , 2021, Physical Review D.
[8] K. Kotake,et al. Impact of binary interactions on the diffuse supernova neutrino background , 2021 .
[9] C. Cerna,et al. Calibration strategy of the JUNO experiment , 2020, Journal of High Energy Physics.
[10] E. Cappellaro,et al. On the rate of core collapse supernovae in the milky way , 2020, New Astronomy.
[11] A. D. Ludovico,et al. Search for low-energy neutrinos from astrophysical sources with Borexino , 2019, Astroparticle Physics.
[12] H. Janka,et al. Stellar Collapse Diversity and the Diffuse Supernova Neutrino Background , 2020, 2010.04728.
[13] L. Wen,et al. Neutral-current background induced by atmospheric neutrinos at large liquid-scintillator detectors:II. ${\it in}$ ${\it situ}$ measurement , 2020, 2009.04085.
[14] L. Wen,et al. Neutral-current background induced by atmospheric neutrinos at large liquid-scintillator detectors. I. Model predictions , 2020, Physical Review D.
[15] I. Martinez-Soler,et al. Fundamental physics with the diffuse supernova background neutrinos , 2020, Physical Review D.
[16] Zheng Wang,et al. Feasibility and physics potential of detecting 8B solar neutrinos at JUNO , 2020, Chinese Physics C.
[17] V. P. Luzio,et al. Deep Underground Neutrino Experiment (DUNE), Far Detector Technical Design Report, Volume II: DUNE Physics , 2020, 2002.03005.
[18] A. Elagin,et al. Theia: an advanced optical neutrino detector , 2019, The European Physical Journal C.
[19] Arnulf Quadt,et al. Oxford University Press : Review of Particle Physics, 2020-2021 , 2020 .
[20] T. Kajita,et al. Reduction of the uncertainty in the atmospheric neutrino flux prediction below 1 GeV using accurately measured atmospheric muon flux , 2019, Physical Review D.
[21] Wan-lei Guo. Low Energy Neutrinos from Stopped Muons in the Earth , 2018, Proceedings of 36th International Cosmic Ray Conference — PoS(ICRC2019).
[22] J.Coleman,et al. Hyper-Kamiokande Design Report , 2018, 1805.04163.
[23] I. Tamborra,et al. Measuring the supernova unknowns at the next-generation neutrino telescopes through the diffuse neutrino background , 2018, Journal of Cosmology and Astroparticle Physics.
[24] C. Lunardini,et al. Diffuse neutrinos from luminous and dark supernovae: prospects for upcoming detectors at the 𝒪(10) kt scale , 2017, 1705.02122.
[25] L. Labarga. The SuperK-gadolinium project , 2017 .
[26] Shun Zhou,et al. Getting the most from the detection of Galactic supernova neutrinos in future large liquid-scintillator detectors , 2016, 1605.07803.
[27] C. Lunardini. Diffuse supernova neutrinos at underground laboratories , 2010, 1007.3252.
[28] W. McDonough,et al. Potential of geo-neutrino measurements at JUNO , 2015, 1510.01523.
[29] Zheng Wang,et al. Neutrino Physics with JUNO , 2015, 1507.05613.
[30] K. Kasahara,et al. Atmospheric neutrino flux calculation using the NRLMSISE-00 atmospheric model , 2015, 1502.03916.
[31] M. Wurm,et al. Detecting the Diffuse Supernova Neutrino Background with LENA , 2014, 1409.2240.
[32] S. Kim,et al. Supernova Relic Neutrino Search with Neutron Tagging at Super-Kamiokande-IV , 2013, 1311.3738.
[33] L. Cadonati,et al. Cosmogenic Backgrounds in Borexino at 3800 m water-equivalent depth , 2013, 1304.7381.
[34] Jun Cao,et al. Unambiguous determination of the neutrino mass hierarchy using reactor neutrinos , 2013, 1303.6733.
[35] Tejpreet Singh Golan,et al. NuWro: the Wroclaw Monte Carlo Generator of Neutrino Interactions , 2012 .
[36] M. Decowski,et al. SEARCH FOR EXTRATERRESTRIAL ANTINEUTRINO SOURCES WITH THE KamLAND DETECTOR , 2011, 1105.3516.
[37] S. Kim,et al. Supernova Relic Neutrino Search at Super-Kamiokande , 2011, 1111.5031.
[38] Alessandra Tonazzo,et al. The next-generation liquid-scintillator neutrino observatory LENA , 2011, 1104.5620.
[39] P. Huber. On the determination of anti-neutrino spectra from nuclear reactors , 2011 .
[40] P. Huber. Determination of antineutrino spectra from nuclear reactors , 2011, 1106.0687.
[41] Gaël Varoquaux,et al. Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..
[42] S. Cormon,et al. Improved Predictions of Reactor Antineutrino Spectra , 2011, 1101.2663.
[43] A. Gando. A study of extraterrestrial antineutrino sources with the KamLAND detector , 2011 .
[44] R. Hatcher,et al. The GENIE * Neutrino Monte Carlo Generator , 2009, 0905.2517.
[45] The KamLAND Collaboration. Production of Radioactive Isotopes through Cosmic Muon Spallation in KamLAND , 2009, 0907.0066.
[46] M. Decowski,et al. Production of radioactive isotopes through cosmic muon spallation in KamLAND , 2009 .
[47] J. Beacom,et al. Diffuse supernova neutrino background is detectable in Super-Kamiokande , 2008, 0812.3157.
[48] E. al.,et al. First study of neutron tagging with a water Cherenkov detector , 2008, 0811.0735.
[49] M. Wolter,et al. TMVA - Toolkit for Multivariate Data Analysis , 2007, physics/0703039.
[50] J. Beacom. The Diffuse Supernova Neutrino Background , 2006, 1004.3311.
[51] A. Hopkins,et al. On the Normalization of the Cosmic Star Formation History , 2006, astro-ph/0601463.
[52] Arjan J. Koning,et al. TALYS: Comprehensive Nuclear Reaction Modeling , 2005 .
[53] T. Montaruli,et al. The atmospheric neutrino flux below 100-MeV: The FLUKA results , 2005 .
[54] S. Ando,et al. Relic neutrino background from cosmological supernovae , 2004, astro-ph/0410061.
[55] J. Beacom,et al. Antineutrino spectroscopy with large water Cerenkov detectors. , 2003, Physical review letters.
[56] S. Kim,et al. Search for supernova relic neutrinos at Super-Kamiokande. , 2003, Physical review letters.
[57] F. Vissani,et al. Precise quasielastic neutrino/nucleon cross-section , 2003, astro-ph/0302055.
[58] A. Fasso,et al. Predicting neutron production from cosmic ray muons , 2001, hep-ex/0101049.
[59] R. Cousins,et al. A Unified Approach to the Classical Statistical Analysis of Small Signals , 1997, physics/9711021.
[60] Hayes,et al. Review of Particle Physics. , 1996, Physical review. D, Particles and fields.
[61] S. Midorikawa,et al. Atmospheric neutrino fluxes , 1990 .
[62] Gaisser,et al. Cosmic-ray neutrinos in the atmosphere. , 1988, Physical review. D, Particles and fields.
[63] E. Salpeter. The Luminosity function and stellar evolution , 1955 .