Prospects for detecting the diffuse supernova neutrino background with JUNO

We present the detection potential for the diffuse supernova neutrino background (DSNB) at the Jiangmen Underground Neutrino Observatory (JUNO), using the inverse-beta-decay (IBD) detection channel on free protons. We employ the latest information on the DSNB flux predictions, and investigate in detail the background and its reduction for the DSNB search at JUNO. The atmospheric neutrino induced neutral current (NC) background turns out to be the most critical background, whose uncertainty is carefully evaluated from both the spread of model predictions and an envisaged in situ measurement. We also make a careful study on the background suppression with the pulse shape discrimination (PSD) and triple coincidence (TC) cuts. With latest DSNB signal predictions, more realistic background evaluation and PSD efficiency optimization, and additional TC cut, JUNO can reach the significance of 3σ for 3 years of data taking, and achieve better than 5σ after 10 years for a reference DSNB model. In the pessimistic scenario of non-observation, JUNO would strongly improve the limits and exclude a significant region of the model parameter space.

Zheng Wang | W. He | Y. Liu | Xiaoping Zhou | C. Cerna | Tao Zhang | Wei Wang | C. Wiebusch | Junjie Cao | F. Gao | Honglin Zhuang | Wei Jiang | C. Taille | R. Leitner | D. Orestano | F. Petrucci | V. Vorobel | Nan Zhou | S. Blyth | K. Zhu | M. Dracos | I. Lippi | B. Clerbaux | A. Stahl | C. Tuvè | Y. Hsiung | B. Asavapibhop | N. Suwonjandee | Siguang Wang | X. Huang | Fei Li | Guoqing Zhang | F. Ning | Meifen Wang | Z. Deng | Shubin Liu | Y. Gornushkin | Xianghui Yu | G. Martin-Chassard | Q. An | Jiawen Zhang | Z. Xing | F. Lefèvre | Zhi Wu | M. Ye | M. Wurm | A. Olshevskiy | F. Ortica | I. Mednieks | X. Ji | Qingmin Zhang | Yuhang Guo | D. Auguste | F. Mantovani | B. Caccianiga | M. Giammarchi | P. Lombardi | L. Ludhova | E. Meroni | L. Miramonti | L. Oberauer | G. Ranucci | A. Re | B. Ricci | A. Romani | O. Smirnov | A. Sotnikov | Wenhao Huang | M. Waqas | Z. You | Zhenhai Qian | R. Brugnera | Arsenii Gavrikov | A. Garfagnini | M. Gonchar | Ziyuan Li | Y. Malyshkin | K. Treskov | Jiang Zhu | Francesco Manzali | Zhibing Li | M. Szelezniak | D. Naumov | T. Hu | A. Triossi | W. Baldini | J. Ochoa-Ricoux | N. Giudice | N. Guardone | M. Bellato | F. Corso | R. Othegraven | D. Breton | A. Paoloni | S. Dusini | L. Stanco | Jun Wang | B. Viaud | M. Bongrand | C. Hagner | C. Jollet | L. Kalousis | T. Lachenmaier | B. Lubsandorzhiev | A. Meregaglia | F. Yermia | M. Slupecki | W. Trzaska | K. Loo | M. Qi | D. Blum | R. Ford | J. Andr'e | F. Druillole | M. Mezzetto | J. Steinmann | F. An | H. Gong | G. Lin | I. Nemchenok | N. Raper | X. Ruan | D. Xia | Zepeng Li | A. Chukanov | C. Sirignano | L. Votano | A. Bolshakova | V. Lyashuk | S. Aiello | J. Busto | Xi Wang | Hongbang Liu | Wei-guo Li | G. Gong | Yumei Zhang | Fanrong Xu | Yongzhao Sun | Yifang Wang | Yuguang Xie | Chun-xu Yu | Wei Wei | Xilei Sun | Jiaheng Zou | Shu-lin Liu | Lucinda W. Wang | Jie Zhang | Yu Chen | Huan Yang | Y. Mao | Jun Hu | Qian Liu | Jingyuan Guo | Shujun Zhao | Xiangwei Yin | Yin Xu | Jian Wang | Zhenyu Zhang | Honghao Zhang | Yi Wang | P. Luo | Shun Zhou | Bo-xiang Yu | Z. Ye | Xiao Cai | T. Enqvist | H. Nunokawa | D. Korablev | E. Baussan | V. Antonelli | A. Cammi | Yung-Hsi Chang | D. Chiesa | D. Fan | Jian Fang | H. Gan | M. Guan | Wanlei Guo | Xinheng Guo | Hanxiong Huang | L. Huo | A. Ioannisian | Xiaoshan Jiang | N. Kazarian | P. Kuusiniemi | Weidong Li | Xiao-nan Li | Yi Li | Yufeng Li | T. Lin | Jianglai Liu | Jinchang Liu | Hao-Qi Lu | Junguang Lu | Xubo Ma | S. Mari | E. Previtali | M. Sisti | Y. Sun | C. Volpe | Chung-Hsiang Wang | Guoli Wang | Meng Wang | Ruiguang Wang | zhe wang | Qun Wu | Y. Xi | Ji-lei Xu | B. Yan | Chang-gen Yang | Lei Yang | Zeyuan Yu | L. Zhan | Jingbo Zhang | Jing Zhou | Li Zhou | W. Huo | K. Jen | R. Lei | E. Naumova | E. Doroshkevich | S. Dmitrievsky | J. Maalmi | C. Lombardo | Yadong Wei | S. Hussain | D. Corti | Zhijian Zhang | D. Basilico | A. Budano | S. Limpijumnong | H. Rebber | P. Walker | L. Fan | D. Navas-Nicolás | Wu Luo | Nan Li | A. Giaz | T. Adam | N. Anfimov | A. Brigatti | D. Fedoseev | V. Gromov | P. Hackspacher | S. Jian | S. Lubsandorzhiev | D. Mayilyan | M. Montuschi | M. Nastasi | Z. Ning | S. Parmeggiano | N. Pelliccia | P. Poussot | H. Qiao | B. Ren | B. Roskovec | A. Rybnikov | P. Saggese | J. Sawatzki | A. Selyunin | V. Strati | A. Tietzsch | J. Wurtz | T. Zhao | W. Zhong | Zongyi Wang | Feiyang Zhang | N. Ushakov | M. Buscemi | R. Caruso | M. Settimo | J. Joutsenvaara | M. Torri | Fule Li | Kunyu Wang | F. Luo | Juno collaboration Angel Abusleme | Shakeel Ahmad | M. Akram | G. Andronico | T. Antoshkina | A. Barresi | A. Bergnoli | T. Birkenfeld | S. Blin | C. Bordereau | I. Butorov | Yanke Cai | Z. Cai | A. Campeny | C. Cao | Jinfan Chang | Po-An Chen | Yi-Wen Chen | Zhang Chen | Jie Cheng | P. Chimenti | G. Claverie | C. Clementi | S. C. D. Lorenzo | W. Depnering | M. Diaz | B. Dirgantara | T. Dohnal | G. Donchenko | Jian-Li Dong | M. Dvořák | H. Enzmann | Li Feng | Qichun Feng | A. Fournier | A. Gottel | M. Gu | X. Gu | Yunting Gu | M. Gul | Cong Guo | Yang Han | T. Heinz | P. Hellmuth | R. Herrera | Shaojing Hou | Bei-Zhen Hu | Hang Hu | Jianrun Hu | Zhuojun Hu | Chunhao Huang | Guihong Huang | Yongbo Huang | J. Hui | C. Huss | R. Isocrate | X. Ji | Huihui Jia | R. Jin | X. Jing | S. Jungthawan | P. Kampmann | K. Khosonthongkee | K. Kouzakov | A. Krasnoperov | N. Kutovskiy | C. Landini | S. Leblanc | Jason Leung | Demin Li | Haitao Li | Huiling Li | Jiaqi Li | Mengzhao Li | Qingjiang Li | Ruhui Li | Shanfeng Li | Tao Li | Xinglong Li | A. Limphirat | Shengxin Lin | Haidong Liu | Hongjuan Liu | Hongtao Liu | Hui Liu | Runxuan Liu | Xiaowei Liu | A. Lokhov | Chuan Lu | Shu-ying Lu | G. Luo | Q. Ma | Si Ma | Xiaoyan Ma | F. Marini | S. Marium | C. Martellini | D. Meyhofer | Jonathan Miller | P. Montini | Y. Pei | A. Peng | F. Perrot | P. Petitjean | L. F. P. Rico | A. Popov | W. Pratumwan | Fazhi Qi | X. Qian | S. Qiu | M. Rajput | A. Rebii | M. Roche | N. Rodphai | S. Rujirawat | S. Sanfilippo | A. Sangka | N. Sanguansak | U. Sawangwit | F. Sawy | M. Schever | C. Schwab | K. Schweizer | A. Serafini | G. Settanta | Jingyan Shi | A. Sidorenkov | J. Siripak | M. Smirnov | T. Sogo-Bezerra | J. Songwadhana | B. Soonthornthum | W. Sreethawong | K. Stankevich | H. Steiger | T. Sterr | M. Stock | A. Studenikin | Shifeng Sun | Q. Tang | Q. Tang | Xiao Tang | T. Tměj | G. Troni | G. Vanroyen | V. Vedin | M. Vialkov | Caishen Wang | E. Wang | Wenshuai Wang | Xiangyue Wang | Yangfu Wang | Yaoguang Wang | Yuanqing Wang | Yuman Wang | A. Watcharangkool | Lianghong Wei | S. Wong | B. Wonsak | Diru Wu | C. Wysotzki | Z. Xie | Benda D. Xu | Mei-hang Xu | Yu Xu | Xiong Yan | Anbo Yang | Jie Yang | Xiaoyu Yang | H. Yao | Jiaxuan Ye | P. Yi | Chiye Yu | Hongzhao Yu | Miao Yu | C. Yuan | Ying Yuan | Zhenxiong Yuan | B. Yue | N. Zafar | Shan Zeng | Tingxuan Zeng | Yuda Zeng | Hai-qiong Zhang | Shiqi Zhang | Xuantong Zhang | Yan Zhang | Yiyu Zhang | Yongpeng Zhang | Yuanyuan Zhang | F. Zhao | R. Zhao | D. Zheng | Aiqiang Zhang | Shao-min Chen | G. Cao | D. Voronin | F. vSimkovic | Zhaohan Li | R. Du | Rizwan Ahmed | N. Balashov | R. Bruno | Hao Cai | R. Callegari | Pingping Chen | Xu-Man Chen | Yi-Xin Chen | Yaping Cheng | A. Chetverikov | O. Dalager | Ziyan Deng | Xuefeng Ding | D. Dolzhikov | Shuxian Du | Andrea Fabbri | Wen Fang | M. Fargetta | M. Grassi | Miao He | Beatrice Jelmini | Ignacio Jeria | Junji Jia | Line Kang | Rebin Karaparambil | Amina Khatun | V. Lebrin | Gaosong Li | Min Li | Xiaomei Li | Hao Liang | Jia-Ming Liao | Jiajie Ling | Q. Liu | Xiwen Liu | Yunzhe Liu | A. Lukanov | Shuqin Luo | Xi Luo | B. Ma | R. C. Mandujano | Agnese Martini | M. Mayer | Axel Muller | Minh Hai Nguyen Thi | O. Pilarczyk | Sen Qian | Zhonghua Qin | Jie Ren | M. Rifai | A. Sadovsky | Z. Shao | V. Sharov | A. Shaydurova | Yanan Shi | V. Shutov | S. Sokolov | Ondvrej vSr'amek | D. vStef'anik | Jian Tang | Igor O. Tkachev | G. Verde | Wenlu Wei | K. Wen | L. Wen | Xiaochuan Xie | Chengze Xu | Hangkun Xu | Jing Xu | T. Yan | Wenqi Yan | Cheng-Yu Yang | Yifan Yang | Na Yin | Zezhong Yu | V. Zavadskyi | Peng-Fei Zhang | S. Zhang | Xiaomei Zhang | Xin Zhang | X. Zhang | Hua Zheng | Tong Zhou | Kangfu Zhu | Zhihang Zhu | Bole Zhuang | Liang Zong | A. Cabrera | Jin Zhang | M. Hassan | Shuangyu Liu | Z. Yasin | Jinnan Zhang | Jie Zhao | Fang Liu | Yangheng Zheng | Y. Hor | Yu Zhang | R. Han | Yuekun Heng | X. Mao | C. Vollbrecht | Yinhong Zhang | Yu-Chuang Yan | Jia-Lin Zhang | Jing-qiao Lu | S. Lu | H. Peng | X. Ruan | X. Xiao | Wander Baldini | Ya-Yun Ding | S. Hu | D. Jiang | Zhimin Wang | Yue Meng | Donglian Xu | Xiao-xu Lu | Min Liu | Xinting Huang | A. Khatun | Yayun Ding | Shouyang Hu | Zhang Tao | Jing Xu | Shulin Liu | Jin-Chang Liu | Boxiang Yu | Yu-guang Xie | Shaomin Chen | Jilei Xu | Xurong Chen | Yue-kun Heng | Zi-Yuan Li | Diru Wu | Xuan-tong Zhang | Hongzhao Yu | Xueyao Zhang | Zhuojun Hu | Hongzhao Yu | Yu Xu | Zhe Wang | Benda Xu | A. Stahl | V. Vorobel | S. Du | A. Stahl | Q. Ma | B. Hu | Chengzhuo Yuan | B. Jelmini | Ruiguang Wang

[1]  Zheng Wang,et al.  Sub-percent Precision Measurement of Neutrino Oscillation Parameters with JUNO , 2022, Chinese Physics C.

[2]  M. Wurm,et al.  Prospects for the Detection of the Diffuse Supernova Neutrino Background with the Experiments SK-Gd and JUNO , 2022, Universe.

[3]  M. Decowski,et al.  Limits on Astrophysical Antineutrinos with the KamLAND Experiment , 2021, The Astrophysical Journal.

[4]  M. Hartz,et al.  Diffuse Supernova Neutrino Background search at Super-Kamiokande with neutron tagging , 2021, Proceedings of 37th International Cosmic Ray Conference — PoS(ICRC2021).

[5]  Zheng Wang,et al.  JUNO physics and detector , 2021, Progress in Particle and Nuclear Physics.

[6]  Zheng Wang,et al.  JUNO sensitivity to low energy atmospheric neutrino spectra , 2021, The European Physical Journal C.

[7]  L. Wen,et al.  Neutral-current background induced by atmospheric neutrinos at large liquid-scintillator detectors. II. Methodology for in situ measurements , 2021, Physical Review D.

[8]  K. Kotake,et al.  Impact of binary interactions on the diffuse supernova neutrino background , 2021 .

[9]  C. Cerna,et al.  Calibration strategy of the JUNO experiment , 2020, Journal of High Energy Physics.

[10]  E. Cappellaro,et al.  On the rate of core collapse supernovae in the milky way , 2020, New Astronomy.

[11]  A. D. Ludovico,et al.  Search for low-energy neutrinos from astrophysical sources with Borexino , 2019, Astroparticle Physics.

[12]  H. Janka,et al.  Stellar Collapse Diversity and the Diffuse Supernova Neutrino Background , 2020, 2010.04728.

[13]  L. Wen,et al.  Neutral-current background induced by atmospheric neutrinos at large liquid-scintillator detectors:II. ${\it in}$ ${\it situ}$ measurement , 2020, 2009.04085.

[14]  L. Wen,et al.  Neutral-current background induced by atmospheric neutrinos at large liquid-scintillator detectors. I. Model predictions , 2020, Physical Review D.

[15]  I. Martinez-Soler,et al.  Fundamental physics with the diffuse supernova background neutrinos , 2020, Physical Review D.

[16]  Zheng Wang,et al.  Feasibility and physics potential of detecting 8B solar neutrinos at JUNO , 2020, Chinese Physics C.

[17]  V. P. Luzio,et al.  Deep Underground Neutrino Experiment (DUNE), Far Detector Technical Design Report, Volume II: DUNE Physics , 2020, 2002.03005.

[18]  A. Elagin,et al.  Theia: an advanced optical neutrino detector , 2019, The European Physical Journal C.

[19]  Arnulf Quadt,et al.  Oxford University Press : Review of Particle Physics, 2020-2021 , 2020 .

[20]  T. Kajita,et al.  Reduction of the uncertainty in the atmospheric neutrino flux prediction below 1 GeV using accurately measured atmospheric muon flux , 2019, Physical Review D.

[21]  Wan-lei Guo Low Energy Neutrinos from Stopped Muons in the Earth , 2018, Proceedings of 36th International Cosmic Ray Conference — PoS(ICRC2019).

[22]  J.Coleman,et al.  Hyper-Kamiokande Design Report , 2018, 1805.04163.

[23]  I. Tamborra,et al.  Measuring the supernova unknowns at the next-generation neutrino telescopes through the diffuse neutrino background , 2018, Journal of Cosmology and Astroparticle Physics.

[24]  C. Lunardini,et al.  Diffuse neutrinos from luminous and dark supernovae: prospects for upcoming detectors at the 𝒪(10) kt scale , 2017, 1705.02122.

[25]  L. Labarga The SuperK-gadolinium project , 2017 .

[26]  Shun Zhou,et al.  Getting the most from the detection of Galactic supernova neutrinos in future large liquid-scintillator detectors , 2016, 1605.07803.

[27]  C. Lunardini Diffuse supernova neutrinos at underground laboratories , 2010, 1007.3252.

[28]  W. McDonough,et al.  Potential of geo-neutrino measurements at JUNO , 2015, 1510.01523.

[29]  Zheng Wang,et al.  Neutrino Physics with JUNO , 2015, 1507.05613.

[30]  K. Kasahara,et al.  Atmospheric neutrino flux calculation using the NRLMSISE-00 atmospheric model , 2015, 1502.03916.

[31]  M. Wurm,et al.  Detecting the Diffuse Supernova Neutrino Background with LENA , 2014, 1409.2240.

[32]  S. Kim,et al.  Supernova Relic Neutrino Search with Neutron Tagging at Super-Kamiokande-IV , 2013, 1311.3738.

[33]  L. Cadonati,et al.  Cosmogenic Backgrounds in Borexino at 3800 m water-equivalent depth , 2013, 1304.7381.

[34]  Jun Cao,et al.  Unambiguous determination of the neutrino mass hierarchy using reactor neutrinos , 2013, 1303.6733.

[35]  Tejpreet Singh Golan,et al.  NuWro: the Wroclaw Monte Carlo Generator of Neutrino Interactions , 2012 .

[36]  M. Decowski,et al.  SEARCH FOR EXTRATERRESTRIAL ANTINEUTRINO SOURCES WITH THE KamLAND DETECTOR , 2011, 1105.3516.

[37]  S. Kim,et al.  Supernova Relic Neutrino Search at Super-Kamiokande , 2011, 1111.5031.

[38]  Alessandra Tonazzo,et al.  The next-generation liquid-scintillator neutrino observatory LENA , 2011, 1104.5620.

[39]  P. Huber On the determination of anti-neutrino spectra from nuclear reactors , 2011 .

[40]  P. Huber Determination of antineutrino spectra from nuclear reactors , 2011, 1106.0687.

[41]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[42]  S. Cormon,et al.  Improved Predictions of Reactor Antineutrino Spectra , 2011, 1101.2663.

[43]  A. Gando A study of extraterrestrial antineutrino sources with the KamLAND detector , 2011 .

[44]  R. Hatcher,et al.  The GENIE * Neutrino Monte Carlo Generator , 2009, 0905.2517.

[45]  The KamLAND Collaboration Production of Radioactive Isotopes through Cosmic Muon Spallation in KamLAND , 2009, 0907.0066.

[46]  M. Decowski,et al.  Production of radioactive isotopes through cosmic muon spallation in KamLAND , 2009 .

[47]  J. Beacom,et al.  Diffuse supernova neutrino background is detectable in Super-Kamiokande , 2008, 0812.3157.

[48]  E. al.,et al.  First study of neutron tagging with a water Cherenkov detector , 2008, 0811.0735.

[49]  M. Wolter,et al.  TMVA - Toolkit for Multivariate Data Analysis , 2007, physics/0703039.

[50]  J. Beacom The Diffuse Supernova Neutrino Background , 2006, 1004.3311.

[51]  A. Hopkins,et al.  On the Normalization of the Cosmic Star Formation History , 2006, astro-ph/0601463.

[52]  Arjan J. Koning,et al.  TALYS: Comprehensive Nuclear Reaction Modeling , 2005 .

[53]  T. Montaruli,et al.  The atmospheric neutrino flux below 100-MeV: The FLUKA results , 2005 .

[54]  S. Ando,et al.  Relic neutrino background from cosmological supernovae , 2004, astro-ph/0410061.

[55]  J. Beacom,et al.  Antineutrino spectroscopy with large water Cerenkov detectors. , 2003, Physical review letters.

[56]  S. Kim,et al.  Search for supernova relic neutrinos at Super-Kamiokande. , 2003, Physical review letters.

[57]  F. Vissani,et al.  Precise quasielastic neutrino/nucleon cross-section , 2003, astro-ph/0302055.

[58]  A. Fasso,et al.  Predicting neutron production from cosmic ray muons , 2001, hep-ex/0101049.

[59]  R. Cousins,et al.  A Unified Approach to the Classical Statistical Analysis of Small Signals , 1997, physics/9711021.

[60]  Hayes,et al.  Review of Particle Physics. , 1996, Physical review. D, Particles and fields.

[61]  S. Midorikawa,et al.  Atmospheric neutrino fluxes , 1990 .

[62]  Gaisser,et al.  Cosmic-ray neutrinos in the atmosphere. , 1988, Physical review. D, Particles and fields.

[63]  E. Salpeter The Luminosity function and stellar evolution , 1955 .