Chaotic whale optimization algorithm

Abstract The Whale Optimization Algorithm (WOA) is a recently developed meta-heuristic optimization algorithm which is based on the hunting mechanism of humpback whales. Similarly to other meta-heuristic algorithms, the main problem faced by WOA is slow convergence speed. So to enhance the global convergence speed and to get better performance, this paper introduces chaos theory into WOA optimization process. Various chaotic maps are considered in the proposed chaotic WOA (CWOA) methods for tuning the main parameter of WOA which helps in controlling exploration and exploitation. The proposed CWOA methods are benchmarked on twenty well-known test functions. The results prove that the chaotic maps (especially Tent map) are able to improve the performance of WOA.

[1]  Jing J. Liang,et al.  Comprehensive learning particle swarm optimizer for global optimization of multimodal functions , 2006, IEEE Transactions on Evolutionary Computation.

[2]  Andrew Lewis,et al.  The Whale Optimization Algorithm , 2016, Adv. Eng. Softw..

[3]  A. N. Jadhav,et al.  WGC: Hybridization of exponential grey wolf optimizer with whale optimization for data clustering , 2017, Alexandria Engineering Journal.

[4]  Xin-She Yang,et al.  Nature-Inspired Metaheuristic Algorithms , 2008 .

[5]  P. Dinakara Prasad Reddy,et al.  Whale optimization algorithm for optimal sizing of renewable resources for loss reduction in distribution systems , 2017 .

[6]  G. Cheng,et al.  On the efficiency of chaos optimization algorithms for global optimization , 2007 .

[7]  Satvir Singh,et al.  Butterfly algorithm with Lèvy Flights for global optimization , 2015, 2015 International Conference on Signal Processing, Computing and Control (ISPCC).

[8]  Hossam Faris,et al.  Optimizing connection weights in neural networks using the whale optimization algorithm , 2016, Soft Computing.

[9]  Majdi M. Mafarja,et al.  Hybrid Whale Optimization Algorithm with simulated annealing for feature selection , 2017, Neurocomputing.

[10]  Francisco Herrera,et al.  A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms , 2011, Swarm Evol. Comput..

[11]  Geoffrey I. Webb,et al.  Encyclopedia of Machine Learning , 2011, Encyclopedia of Machine Learning.

[12]  Andrew Lewis,et al.  Biogeography-based optimisation with chaos , 2014, Neural Computing and Applications.

[13]  F. Wilcoxon Individual Comparisons by Ranking Methods , 1945 .

[14]  Carroll,et al.  Synchronization in chaotic systems. , 1990, Physical review letters.

[15]  Sankalap Arora,et al.  Chaotic grey wolf optimization algorithm for constrained optimization problems , 2018, J. Comput. Des. Eng..

[16]  Xin-She Yang,et al.  A New Metaheuristic Bat-Inspired Algorithm , 2010, NICSO.

[17]  Seyed Mohammad Mirjalili,et al.  The Ant Lion Optimizer , 2015, Adv. Eng. Softw..

[18]  Bilal Alatas,et al.  Chaotic bee colony algorithms for global numerical optimization , 2010, Expert Syst. Appl..

[19]  Xin Yao,et al.  Evolutionary programming made faster , 1999, IEEE Trans. Evol. Comput..

[20]  Luca Maria Gambardella,et al.  Ant colony system: a cooperative learning approach to the traveling salesman problem , 1997, IEEE Trans. Evol. Comput..

[21]  Di He,et al.  Chaotic characteristics of a one-dimensional iterative map with infinite collapses , 2001 .

[22]  Konstantinos G. Margaritis,et al.  On benchmarking functions for genetic algorithms , 2001, Int. J. Comput. Math..

[23]  Amir Hossein Alavi,et al.  Krill herd: A new bio-inspired optimization algorithm , 2012 .

[24]  Andrew Lewis,et al.  Grey Wolf Optimizer , 2014, Adv. Eng. Softw..

[25]  Leandro dos Santos Coelho,et al.  Use of chaotic sequences in a biologically inspired algorithm for engineering design optimization , 2008, Expert Syst. Appl..

[26]  Bo Liu,et al.  Improved particle swarm optimization combined with chaos , 2005 .

[27]  Chen Tian-Lun,et al.  Application of Chaos in Genetic Algorithms , 2002 .

[28]  Xin-She Yang,et al.  Firefly algorithm with chaos , 2013, Commun. Nonlinear Sci. Numer. Simul..

[29]  Carlos A. Coello Coello,et al.  Use of a self-adaptive penalty approach for engineering optimization problems , 2000 .

[30]  Xin-She Yang,et al.  Firefly Algorithm, Lévy Flights and Global Optimization , 2010, SGAI Conf..

[31]  Amir Hossein Gandomi,et al.  Chaotic bat algorithm , 2014, J. Comput. Sci..

[32]  Satvir Singh,et al.  An improved butterfly optimization algorithm with chaos , 2017, J. Intell. Fuzzy Syst..

[33]  Enrique Alba,et al.  The exploration/exploitation tradeoff in dynamic cellular genetic algorithms , 2005, IEEE Transactions on Evolutionary Computation.

[34]  Miltos Petridis,et al.  Research and Development in Intelligent Systems XXVI, Incorporating Applications and Innovations in Intelligent Systems XVII, Peterhouse College, Cambridge, UK, 15-17 December 2009 , 2010, SGAI Conferences.

[35]  S. Arora,et al.  Node Localization in Wireless Sensor Networks Using Butterfly Optimization Algorithm , 2017, Arabian Journal for Science and Engineering.

[36]  Shunmiao Zhang,et al.  Improving Swarm Intelligence Accuracy with Cosine Functions for Evolved Bat Algorithm , 2015, J. Inf. Hiding Multim. Signal Process..

[37]  Amir Hossein Gandomi,et al.  Bat algorithm for constrained optimization tasks , 2012, Neural Computing and Applications.

[38]  Francisco Herrera,et al.  A study on the use of non-parametric tests for analyzing the evolutionary algorithms’ behaviour: a case study on the CEC’2005 Special Session on Real Parameter Optimization , 2009, J. Heuristics.

[39]  Seppo J. Ovaska,et al.  A modified harmony search method in constrained optimization , 2010 .

[40]  Dan Simon,et al.  Biogeography-Based Optimization , 2022 .

[41]  Ali Kaveh,et al.  Sizing Optimization of Skeletal Structures Using the Enhanced Whale Optimization Algorithm , 2017 .

[42]  Amir Hossein Gandomi,et al.  Chaotic Krill Herd algorithm , 2014, Inf. Sci..

[43]  Bilal Alatas,et al.  Chaotic harmony search algorithms , 2010, Appl. Math. Comput..

[44]  S. N. Sivanandam,et al.  Principles of soft computing , 2011 .

[45]  Stephen H. Kellert In the wake of chaos: Unpredictable order in dynamical systems , 1993 .

[46]  Ali Kaveh,et al.  Applications of Metaheuristic Optimization Algorithms in Civil Engineering , 2016 .