Comparison of Dynamics of Ions in Ionically Conducting Materials and Dynamics of Glass-Forming Substances: Remarkable Similarities

Abstract We consider many of the fundamental dynamic properties of ionically conducting glasses, crystals and melts and show there are analogues in the dynamic properties of glass-forming substances. These similarities suggest the dynamics of these two classes of complex systems are governed by the same physics. We also show within each class, the evolution of dynamics from short time to long times are principally governed by the stretch exponent of the Kohlrasuch function, which determines either the primary relaxation of glass-formers or the conductivity relaxation of ionic conductors.

[1]  Steve W. Martin,et al.  7Li and 11B nuclear spin lattice relaxation in B2O3 + 0.7Li2O + XLiCl glassy fast ionic conductors , 1992 .

[2]  A. Heuer,et al.  Nature of the Non-exponential Primary Relaxation in Structural Glass-formers Probed by Dynamically Selective Experiments , 1998 .

[3]  Colmenero,et al.  Crossover from Debye to non-Debye dynamical behavior of the alpha relaxation observed by quasielastic neutron scattering in a glass-forming polymer. , 1993, Physical review letters.

[4]  R. Mohr,et al.  Dielectric Relaxation in High‐Silica Borosilicate Glasses , 1979 .

[5]  K. Ngai Properties of the constant loss in ionically conducting glasses, melts, and crystals , 1999 .

[6]  D. Plazek,et al.  Physical Properties of Aromatic Hydrocarbons. II. Solidification Behavior of 1,3,5‐Tri‐α‐Naphthylbenzene , 1967 .

[7]  J. Habasaki,et al.  Fracton Excitation and Levy Flight Dynamics in Alkali Silicate Glasses , 1997 .

[8]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[9]  K. Funke,et al.  Jump relaxation in solid electrolytes , 1993 .

[10]  Greaves Gn,et al.  Reconciling ionic-transport properties with atomic structure in oxide glasses. , 1995 .

[11]  K. Ngai Difference between nuclear spin relaxation and ionic conductivity relaxation in superionic glasses , 1993 .

[12]  Sokolov,et al.  Relaxational and vibrational dynamics in the glass-transition range of a strong glass former B2O3. , 1996, Physical review. B, Condensed matter.

[13]  K. Ngai Dynamic and thermodynamic properties of glass-forming substances , 2000 .

[14]  C. Cramer,et al.  Ion dynamics in glass-forming systems: II. Conductivity spectra above the glass transformation temperature , 1995 .

[15]  K. Ngai,et al.  Analysis of the susceptibility minimum observed in 0.4Ca(NO3)2–0.6KNO3 by dielectric spectroscopy and light scattering , 2000 .

[16]  K. Funke Jump relaxation model and coupling model : a comparison , 1994 .

[17]  K. Ngai,et al.  The nature of the linear frequency dependent alternating current conductivity interpolating between conductivity relaxational and vibrational responses in alkali oxide glasses , 1992 .

[18]  Steve W. Martin,et al.  A new problem in the correlation of nuclear‐spin relaxation and ionic conductivity in superionic glasses , 1992 .

[19]  Wolfgang Götze,et al.  REVIEW ARTICLE: Recent tests of the mode-coupling theory for glassy dynamics , 1999 .

[20]  Á. Alegría,et al.  The dynamics of the α- and β-relaxations in glass-forming polymers studied by quasielastic neutron scattering and dielectric spectroscopy , 1994 .

[21]  K. Ngai,et al.  Flow, diffusion and crystallization of supercooled liquids: Revisited , 2000 .

[22]  K L Ngai,et al.  Similarity of relaxation in supercooled liquids and interacting arrays of oscillators. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[23]  Fischer,et al.  Dielectric relaxation of liquids at the surface of a porous glass. , 1995, Physical review. B, Condensed matter.

[24]  M. Cicerone,et al.  TRANSLATIONAL DIFFUSION ON HETEROGENEOUS LATTICES : A MODEL FOR DYNAMICS IN GLASS FORMING MATERIALS , 1997 .

[25]  G. Chryssikos,et al.  Dielectric spectra of ionic conducting oxide glasses to 2 GHz , 1989 .

[26]  K. L. Ngai,et al.  An extended coupling model description of the evolution of dynamics with time in supercooled liquids and ionic conductors , 2003 .

[27]  C. Angell Ten questions on glassformers, and a real space`excitations'model with some answers on fragility and phase transitions , 2000 .

[28]  C. Cramer,et al.  Ionic motion in materials with disordered structures: conductivity spectra and the concept of mismatch and relaxation , 2002 .

[29]  J. H. Magill,et al.  Physical properties of aromatic hydrocarbons: V. The solidification behavior of 1:2 diphenylbenzene , 1973 .

[30]  M. Tosi,et al.  Non-Equilibrium phenomena in supercooled fluids, glasses and amorphous materials , 1996 .

[31]  Tao,et al.  Testing mode-coupling predictions for alpha and beta relaxation in Ca0.4K0.6(NO3)1.4 near the liquid-glass transition by light scattering. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[32]  H. Wagner,et al.  The dielectric modulus: relaxation versus retardation , 1998 .

[33]  H. Sillescu,et al.  Translational and rotational diffusion in supercooled orthoterphenyl close to the glass transition , 1992 .

[34]  Dreyfus,et al.  Depolarized light-scattering study of molten zinc chloride. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[35]  N. Surovtsev,et al.  Fast and slow relaxation processes in glasses , 1999 .

[36]  Liu,et al.  Limiting behavior of ac conductivity in ionically conducting crystals and glasses: A new universality. , 1991, Physical review letters.

[37]  K. Ngai Why the fast relaxation in the picosecond to nanosecond time range can sense the glass transition , 2004 .

[38]  Susanne Stemmer,et al.  Atomistic structure of 90° domain walls in ferroelectric PbTiO3 thin films , 1995 .

[39]  K. Ngai,et al.  Temperature dependence of the near constant loss in ionic conductors: a coupling model approach , 2003 .

[40]  K. Ngai Comparisons between 23Na and 27Al nuclear spin relaxations and electrical conductivity relaxation in Na β-alumina , 1993 .

[41]  R. Böhmer,et al.  Heterogeneous and Homogeneous Diffusivity in an Ion-Conducting Glass , 1999 .

[42]  H. Sillescu,et al.  Translational and rotational molecular motion in supercooled liquids studied by NMR and forced Rayleigh scattering , 1994 .

[43]  M. L. Lucía,et al.  Correlated ion hopping in single-crystal yttria-stabilized zirconia , 1997 .

[44]  A. Kisliuk,et al.  Observation of constant loss in fast relaxation spectra of polymers , 2001 .

[45]  P. B. Macedo,et al.  Electrical relaxation in a glass-forming molten salt , 1974 .

[46]  C. T. Moynihan,et al.  The Dynamics of Mobile Ions in lonically Conducting Glasses and Other Materials , 1998 .

[47]  K. Schmidt-Rohr,et al.  Nature of nonexponential loss of correlation above the glass transition investigated by multidimensional NMR. , 1991, Physical review letters.

[48]  Paul F. McMillan,et al.  Relaxation in glassforming liquids and amorphous solids , 2000 .

[49]  M. Paluch,et al.  Inference of the Evolution from Caged Dynamics to Cooperative Relaxation in Glass-Formers from Dielectric Relaxation Data , 2003 .

[50]  R. Rendell,et al.  The Symmetric and Fully Distributed Solution to a Generalized Dining Philosophers Problem: An Analogue of the Coupling Theory of Relaxations in Complex Correlated Systems , 1990 .

[51]  G. Fytas,et al.  Intercomparisons of dielectric relaxation, dynamic light scattering, and viscoelastic properties of the local segmental motion in amorphous polymers , 1988 .

[52]  W. Dieterich,et al.  Relaxation of charged particles in disordered systems , 1994 .

[53]  M. Ediger Can density or entropy fluctuations explain enhanced translational diffusion in glass-forming liquids? , 1998 .

[54]  C. Cramer,et al.  Complete conductivity spectra of fast ion conducting silver iodide/silver selenate glasses , 1998 .

[55]  Carlos León,et al.  A combined molecular dynamics simulation, experimental and coupling model study of the ion dynamics in glassy ionic conductors , 2003 .

[56]  Frick,et al.  Neutron scattering study of the picosecond dynamics of polybutadiene and polyisoprene. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[57]  A. Bunde,et al.  Conductivity and spin lattice relaxation in disordered ionic conductors , 1994 .

[58]  R. Rendell,et al.  Anomalous isotope-mass effect in lithium borate glasses: Comparison with a unified relaxation model , 1984 .

[59]  Suemoto,et al.  Quasielastic light scattering in oxygen-ion conductors. , 1986, Physical review. B, Condensed matter.

[60]  K. Ngai,et al.  A quantitative explanation of the difference between nuclear spin relaxation and ionic conductivity relaxation in superionic glasses , 2003 .

[61]  Petersen,et al.  Non-Debye relaxation in structurally disordered ionic conductors: Effect of Coulomb interaction. , 1991, Physical review letters.

[62]  H. Jain,et al.  Study of low-frequency excitations in disordered solids by nuclear magnetic resonance and electrical conductivity , 1994 .

[63]  Patel,et al.  Relaxation and fluctuations in glassy fast-ion conductors: Wide-frequency-range NMR and conductivity measurements. , 1992, Physical review. B, Condensed matter.

[64]  P. Lunkenheimer,et al.  Fast Dynamics in CKN and CRN Investigated by Dielectric Spectroscopy , 1997 .

[65]  Martin Goldstein,et al.  Viscous Liquids and the Glass Transition. II. Secondary Relaxations in Glasses of Rigid Molecules , 1970 .

[66]  K. Ngai Absence of difference between 11B nuclear spin relaxation and Li ion conductivity relaxation in (LiCl)0.6-(Li2O)0.7-(B2O3)1.0 superionic glasses , 1993 .

[67]  C. T. Moynihan,et al.  Correlation between the Activation Energies for Ionic Conductivity for Short and Long Time Scales and the Kohlrausch Stretching Parameter β for Ionically Conducting Solids and Melts , 1998 .