Norm Comparisons for Data Augmentation
暂无分享,去创建一个
[1] Gareth O. Roberts,et al. Variance bounding Markov chains. , 2008, 0806.2747.
[2] Jun S. Liu,et al. Parameter Expansion for Data Augmentation , 1999 .
[3] J. Rosenthal,et al. Markov Chains and De-initialising Processes by , 2001 .
[4] Barnes. Discussion of the Paper , 1961, Public health papers and reports.
[5] L. A. Goldberg,et al. Markov chain comparison , 2004, math/0410331.
[6] Gareth O. Roberts,et al. Markov Chains and De‐initializing Processes , 2001 .
[7] W. Wong,et al. The calculation of posterior distributions by data augmentation , 1987 .
[8] J. Rosenthal,et al. Geometric Ergodicity and Hybrid Markov Chains , 1997 .
[9] Y. Amit. On rates of convergence of stochastic relaxation for Gaussian and non-Gaussian distributions , 1991 .
[10] S. Varadhan,et al. Central limit theorem for additive functionals of reversible Markov processes and applications to simple exclusions , 1986 .
[11] S. Rosenthal,et al. Asymptotic Variance and Convergence Rates of Nearly-Periodic MCMC Algorithms , 2002 .
[12] Xiao-Li Meng,et al. Seeking efficient data augmentation schemes via conditional and marginal augmentation , 1999 .
[13] J. Hobert,et al. A theoretical comparison of the data augmentation, marginal augmentation and PX-DA algorithms , 2008, 0804.0671.
[14] P. Peskun,et al. Optimum Monte-Carlo sampling using Markov chains , 1973 .
[15] Antonietta Mira,et al. Ordering Monte Carlo Markov Chains , 1999 .
[16] L. Tierney. A note on Metropolis-Hastings kernels for general state spaces , 1998 .
[17] J. Rosenthal,et al. General state space Markov chains and MCMC algorithms , 2004, math/0404033.
[18] Antonietta Mira,et al. Ordering and Improving the Performance of Monte Carlo Markov Chains , 2001 .
[19] Jun S. Liu,et al. Covariance structure of the Gibbs sampler with applications to the comparisons of estimators and augmentation schemes , 1994 .
[20] J. A. Fill. Eigenvalue bounds on convergence to stationarity for nonreversible markov chains , 1991 .