Critical Review: digital resolution biomolecular sensing for diagnostics and life science research.

One of the frontiers in the field of biosensors is the ability to quantify specific target molecules with enough precision to count individual units in a test sample, and to observe the characteristics of individual biomolecular interactions. Technologies that enable observation of molecules with "digital precision" have applications for in vitro diagnostics with ultra-sensitive limits of detection, characterization of biomolecular binding kinetics with a greater degree of precision, and gaining deeper insights into biological processes through quantification of molecules in complex specimens that would otherwise be unobservable. In this review, we seek to capture the current state-of-the-art in the field of digital resolution biosensing. We describe the capabilities of commercially available technology platforms, as well as capabilities that have been described in published literature. We highlight approaches that utilize enzymatic amplification, nanoparticle tags, chemical tags, as well as label-free biosensing methods.

[1]  Yeechi Chen,et al.  Plasmonic nanoparticle dimers for optical sensing of DNA in complex media. , 2010, Journal of the American Chemical Society.

[2]  Lan Yang,et al.  Chiral modes and directional lasing at exceptional points , 2016, Proceedings of the National Academy of Sciences.

[3]  Lan Yang,et al.  Single virus and nanoparticle size spectrometry by whispering-gallery-mode microcavities. , 2011, Optics express.

[4]  T. Kippenberg,et al.  Cavity Optomechanics: Back-Action at the Mesoscale , 2008, Science.

[5]  B. J. Venton,et al.  Review: Carbon nanotube based electrochemical sensors for biomolecules. , 2010, Analytica chimica acta.

[6]  David Sept,et al.  Real-time shape approximation and fingerprinting of single proteins using a nanopore. , 2015, Nature nanotechnology.

[7]  M. Tewari,et al.  A guide to nucleic acid detection by single-molecule kinetic fingerprinting. , 2019, Methods.

[8]  Kwang S. Kim,et al.  Engineered Carbon-Nanomaterial-Based Electrochemical Sensors for Biomolecules. , 2016, ACS nano.

[9]  R. Bashir,et al.  Nanopore sensors for nucleic acid analysis. , 2011, Nature nanotechnology.

[10]  K. Besteman,et al.  Enzyme-Coated Carbon Nanotubes as Single-Molecule Biosensors , 2003 .

[11]  M. Tewari,et al.  Ultraspecific analyte detection by direct kinetic fingerprinting of single molecules. , 2020, Trends in analytical chemistry : TRAC.

[12]  K. Mawatari,et al.  Nonfluorescent Molecule Detection in 102 nm Nanofluidic Channels by Photothermal Optical Diffraction. , 2019, Analytical chemistry.

[13]  Donghyun Kim,et al.  Detection of Single Nanoparticles Using the Dissipative Interaction in a High-Q Microcavity , 2016, 1604.02249.

[14]  He Tian,et al.  Discrimination of oligonucleotides of different lengths with a wild-type aerolysin nanopore. , 2016, Nature nanotechnology.

[15]  Na Zhou,et al.  Shape-Dependent Two-Photon Photoluminescence of Single Gold Nanoparticles , 2014 .

[16]  Douglas J. Botkin,et al.  Nanopore DNA Sequencing and Genome Assembly on the International Space Station , 2016, bioRxiv.

[17]  N. Walter,et al.  Probing RNA structure and interaction dynamics at the single molecule level. , 2019, Methods.

[18]  N. Shah,et al.  Surface-enhanced Raman spectroscopy. , 2008, Annual review of analytical chemistry.

[19]  Luke P. Lee,et al.  Gold nanocap-supported upconversion nanoparticles for fabrication of a solid-phase aptasensor to detect ochratoxin A. , 2019, Biosensors & bioelectronics.

[20]  Quantifying Protein–Protein Interactions by Molecular Counting with Mass Photometry , 2020, Angewandte Chemie.

[21]  David R Walt,et al.  Single molecule array (Simoa) assay with optimal antibody pairs for cytokine detection in human serum samples. , 2015, The Analyst.

[22]  D. McNabb,et al.  Slowing DNA translocation in a solid-state nanopore. , 2005, Nano letters.

[23]  W. D. de Heer,et al.  Carbon Nanotubes--the Route Toward Applications , 2002, Science.

[24]  J. Betton,et al.  Unfolding of proteins and long transient conformations detected by single nanopore recording. , 2007, Physical review letters.

[25]  Jose L. Garcia-Cordero,et al.  Mechanically Induced Trapping of Molecular Interactions and Its Applications , 2016, Journal of laboratory automation.

[26]  Xiu‐Ping Yan,et al.  Doped quantum dots for chemo/biosensing and bioimaging. , 2013, Chemical Society reviews.

[27]  Baoxin Li,et al.  A cytometric assay for ultrasensitive and robust detection of human telomerase RNA based on toehold strand displacement. , 2017, Biosensors & bioelectronics.

[28]  M. Engel,et al.  Signal Analysis and Classification for Surface Plasmon Assisted Microscopy of Nanoobjects , 2010 .

[29]  Zhengping Li,et al.  Phosphorylation-induced hybridization chain reaction on beads: an ultrasensitive flow cytometric assay for the detection of T4 polynucleotide kinase activity. , 2015, Chemical communications.

[30]  H. Yeh,et al.  Single-quantum-dot-based DNA nanosensor , 2005, Nature materials.

[31]  J. Behrends,et al.  Electrical recognition of the twenty proteinogenic amino acids using an aerolysin nanopore , 2019, Nature Biotechnology.

[32]  B. Cunningham,et al.  Microcavity-Mediated Spectrally Tunable Amplification of Absorption in Plasmonic Nanoantennas. , 2019, Nano letters.

[33]  P. Whitford,et al.  Nanopore-Based Measurements of Protein Size, Fluctuations, and Conformational Changes. , 2017, ACS nano.

[34]  Jing Wang,et al.  Comparison of four digital PCR platforms for accurate quantification of DNA copy number of a certified plasmid DNA reference material , 2015, Scientific Reports.

[35]  E. Yeung,et al.  Single molecule biosensing using color coded plasmon resonant metal nanoparticles. , 2010, Analytical chemistry.

[36]  Frank Vollmer,et al.  Optical observation of single atomic ions interacting with plasmonic nanorods in aqueous solution , 2016, Nature Photonics.

[37]  E. Engvall,et al.  Enzyme-linked immunosorbent assay, Elisa. 3. Quantitation of specific antibodies by enzyme-labeled anti-immunoglobulin in antigen-coated tubes. , 1972, Journal of immunology.

[38]  Ute Resch-Genger,et al.  Perspectives and challenges of photon-upconversion nanoparticles - Part II: bioanalytical applications , 2017, Analytical and Bioanalytical Chemistry.

[39]  David W. McComb,et al.  DNA Tunneling Detector Embedded in a Nanopore , 2010, Nano letters.

[40]  David M. Rissin,et al.  Polymerase-free measurement of microRNA-122 with single base specificity using single molecule arrays: Detection of drug-induced liver injury , 2017, PloS one.

[41]  Joachim Knittel,et al.  Detection limits in whispering gallery biosensors with plasmonic enhancement , 2011 .

[42]  K. Mullis,et al.  Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. , 1985, Science.

[43]  Emory M. Chan,et al.  Combinatorial approaches for developing upconverting nanomaterials: high-throughput screening, modeling, and applications. , 2015, Chemical Society reviews.

[44]  Zhihong Liu,et al.  Upconversion fluorescence resonance energy transfer biosensor with aromatic polymer nanospheres as the lable-free energy acceptor. , 2013, Analytical chemistry.

[45]  Ling Lu,et al.  Spawning rings of exceptional points out of Dirac cones , 2015, Nature.

[46]  David M. Rissin,et al.  Stochastic inhibitor release and binding from single-enzyme molecules , 2007, Proceedings of the National Academy of Sciences.

[47]  Jian-hui Jiang,et al.  Protein scaffolded DNA tetrads enable efficient delivery and ultrasensitive imaging of miRNA through crosslinking hybridization chain reaction , 2018, Chemical science.

[48]  Mark Akeson,et al.  Unfoldase-mediated protein translocation through an α-hemolysin nanopore , 2013, Nature Biotechnology.

[49]  R. McCreery,et al.  Advanced carbon electrode materials for molecular electrochemistry. , 2008, Chemical reviews.

[50]  A. Ivankin,et al.  Label-Free Optical Detection of Biomolecular Translocation through Nanopore Arrays , 2014, ACS nano.

[51]  Joseph Wang Carbon‐Nanotube Based Electrochemical Biosensors: A Review , 2005 .

[52]  Richard W. Taylor,et al.  Visualization of lipids and proteins at high spatial and temporal resolution via interferometric scattering (iSCAT) microscopy , 2016 .

[53]  I. Mangone,et al.  Diagnosis and characterization of canine distemper virus through sequencing by MinION nanopore technology , 2019, Scientific Reports.

[54]  Sheereen Majd,et al.  Controlling the translocation of proteins through nanopores with bioinspired fluid walls , 2011, Nature nanotechnology.

[55]  Frank Vollmer,et al.  Label-free optical detection of single enzyme-reactant reactions and associated conformational changes , 2017, Science Advances.

[56]  Francesco De Angelis,et al.  A hybrid plasmonic-photonic nanodevice for label-free detection of a few molecules. , 2008, Nano letters.

[57]  Allen Y. Chen,et al.  Single-molecule detection of protein efflux from microorganisms using fluorescent single-walled carbon nanotube sensor arrays. , 2017, Nature nanotechnology.

[58]  H. Bayley,et al.  Stochastic sensors inspired by biology , 2001, Nature.

[59]  J. Pelta,et al.  Identification of single amino acid differences in uniformly charged homopolymeric peptides with aerolysin nanopore , 2018, Nature Communications.

[60]  W. Cai,et al.  Plasmonics for extreme light concentration and manipulation. , 2010, Nature materials.

[61]  H. Bayley,et al.  Continuous base identification for single-molecule nanopore DNA sequencing. , 2009, Nature nanotechnology.

[62]  Brent S. Pedersen,et al.  Nanopore sequencing and assembly of a human genome with ultra-long reads , 2017, Nature Biotechnology.

[63]  Joshua B Edel,et al.  Single molecule multiplexed nanopore protein screening in human serum using aptamer modified DNA carriers , 2017, Nature Communications.

[64]  Jingmin Jin,et al.  Rapid electronic detection of probe-specific microRNAs using thin nanopore sensors. , 2010, Nature nanotechnology.

[65]  Mikhail G. Shapiro,et al.  Characterizing Single Polymeric and Protein Nanoparticles with Surface Plasmon Resonance Imaging Measurements , 2017, ACS nano.

[66]  Chun-Yang Zhang,et al.  Single quantum dot-based nanosensor for multiple DNA detection. , 2010, Analytical chemistry.

[67]  S. Maier,et al.  Rapid ultrasensitive single particle surface-enhanced Raman spectroscopy using metallic nanopores. , 2013, Nano letters.

[68]  David R Walt,et al.  Digital readout of target binding with attomole detection limits via enzyme amplification in femtoliter arrays. , 2006, Journal of the American Chemical Society.

[69]  Derin Sevenler,et al.  Beating the reaction limits of biosensor sensitivity with dynamic tracking of single binding events , 2018, Proceedings of the National Academy of Sciences.

[70]  C. P. Bean,et al.  Counting and Sizing of Submicron Particles by the Resistive Pulse Technique , 1970 .

[71]  Marin Soljacic,et al.  Bound states in the continuum , 2016 .

[72]  Stefan Howorka,et al.  Detecting protein analytes that modulate transmembrane movement of a polymer chain within a single protein pore , 2000, Nature Biotechnology.

[73]  John A Rogers,et al.  Nanostructured plasmonic sensors. , 2008, Chemical reviews.

[74]  S. Wegner,et al.  Conformational Dynamics of a Single Protein Monitored for 24 h at Video Rate , 2018, Nano letters.

[75]  S. Turner,et al.  Zero-Mode Waveguides for Single-Molecule Analysis at High Concentrations , 2003, Science.

[76]  Sung-Wook Nam,et al.  Ionic field effect transistors with sub-10 nm multiple nanopores. , 2009, Nano letters.

[77]  M. Sauer,et al.  Probes for detection of specific DNA sequences at the single-molecule level. , 2000, Analytical chemistry.

[78]  Zhaohui Li,et al.  Detection of single-molecule DNA hybridization using enzymatic amplification in an array of femtoliter-sized reaction vessels. , 2008, Journal of the American Chemical Society.

[79]  Melik C. Demirel,et al.  Nanoparticle-based protein detection by optical shift of a resonant microcavity , 2002, 1108.2337.

[80]  A. Micolich,et al.  Nanopore blockade sensors for ultrasensitive detection of proteins in complex biological samples , 2019, Nature Communications.

[81]  Romain Quidant,et al.  Self -induced back-action optical trapping of dielectric nanoparticles , 2009 .

[82]  Philip G. Collins,et al.  Single-Molecule Lysozyme Dynamics Monitored by an Electronic Circuit , 2012, Science.

[83]  M. N. Petrovich,et al.  Hollow-bottle optical microresonators , 2011, CLEO: 2011 - Laser Science to Photonic Applications.

[84]  R. Gordon,et al.  Label-Free Free-Solution Single-Molecule Protein–Small Molecule Interaction Observed by Double-Nanohole Plasmonic Trapping , 2014 .

[85]  Hans H. Gorris,et al.  Measurement of Sub-femtomolar Concentrations of Prostate-Specific Antigen through Single-Molecule Counting with an Upconversion-Linked Immunosorbent Assay , 2019, Analytical Chemistry.

[86]  H. Bayley,et al.  Single-molecule site-specific detection of protein phosphorylation with a nanopore , 2014, Nature Biotechnology.

[87]  Phenix-Lan Quan,et al.  dPCR: A Technology Review , 2018, Sensors.

[88]  Wei Wang,et al.  Detection of Single Nanoparticles and Lentiviruses Using Microcavity Resonance Broadening , 2013, Advanced materials.

[89]  Songky Moon,et al.  Observation of an exceptional point in a chaotic optical microcavity. , 2009, Physical review letters.

[90]  Igor L. Medintz,et al.  Self-assembled nanoscale biosensors based on quantum dot FRET donors , 2003, Nature materials.

[91]  David H Wilson,et al.  Simple diffusion-constrained immunoassay for p24 protein with the sensitivity of nucleic acid amplification for detecting acute HIV infection. , 2013, Journal of virological methods.

[92]  Yuyuan Tian,et al.  Time-Resolved Digital Immunoassay for Rapid and Sensitive Quantitation of Procalcitonin with Plasmonic Imaging. , 2019, ACS nano.

[93]  Y. Long,et al.  Biological Nanopores: Confined Spaces for Electrochemical Single-Molecule Analysis. , 2018, Accounts of chemical research.

[94]  K. Überla,et al.  Real-time Detection of Single Immobilized Nanoparticles by Surface Plasmon Resonance Imaging , 2010 .

[95]  S. Arnold,et al.  Shift of whispering-gallery modes in microspheres by protein adsorption. , 2003, Optics letters.

[96]  Yuanjin Zhao,et al.  Emerging Droplet Microfluidics. , 2017, Chemical reviews.

[97]  David R Walt,et al.  Direct detection of bacterial genomic DNA at sub-femtomolar concentrations using single molecule arrays. , 2013, Analytical chemistry.

[98]  Hugh E. Olsen,et al.  The Oxford Nanopore MinION: delivery of nanopore sequencing to the genomics community , 2016, Genome Biology.

[99]  C. Craik,et al.  Trapping Moving Targets with Small Molecules , 2009, Science.

[100]  Jesus Rodriguez-Manzano,et al.  Reading Out Single-Molecule Digital RNA and DNA Isothermal Amplification in Nanoliter Volumes with Unmodified Camera Phones , 2016, ACS nano.

[101]  Aaron R. Hawkins,et al.  Correlated Electrical and Optical Analysis of Single Nanoparticles and Biomolecules on a Nanopore-Gated Optofluidic Chip , 2014, Nano letters.

[102]  Yi-Tao Long,et al.  Structure of Peptides Investigated by Nanopore Analysis , 2004 .

[103]  Ran Zhang,et al.  Whispering-gallery-mode microdisk lasers produced by femtosecond laser direct writing. , 2011, Optics letters.

[104]  Brahim Lounis,et al.  Photothermal Imaging of Nanometer-Sized Metal Particles Among Scatterers , 2002, Science.

[105]  Shengli Cai,et al.  Small molecule electro-optical binding assay using nanopores , 2019, Nature Communications.

[106]  Xiaomei Yan,et al.  Rolling circle amplification integrated with suspension bead array for ultrasensitive multiplex immunodetection of tumor markers. , 2019, Analytica chimica acta.

[107]  David H Wilson,et al.  The Simoa HD-1 Analyzer , 2016, Journal of laboratory automation.

[108]  Aleksei Aksimentiev,et al.  Slowing down DNA translocation through a nanopore in lithium chloride. , 2012, Nano letters.

[109]  Shuming Nie,et al.  Counting single native biomolecules and intact viruses with color-coded nanoparticles. , 2006, Analytical chemistry.

[110]  C Raillon,et al.  Detecting the translocation of DNA through a nanopore using graphene nanoribbons. , 2013, Nature nanotechnology.

[111]  K. Shepard,et al.  Label-free single-molecule detection of DNA-hybridization kinetics with a carbon nanotube field-effect transistor. , 2011, Nature nanotechnology.

[112]  M. Wanunu,et al.  Plasmonic nanopores for single-molecule detection and manipulation: towards sequencing applications. , 2019, Nano letters.

[113]  Adam Ameur,et al.  Single-Molecule Sequencing: Towards Clinical Applications. , 2019, Trends in biotechnology.

[114]  M. Niederweis,et al.  Single-molecule DNA detection with an engineered MspA protein nanopore , 2008, Proceedings of the National Academy of Sciences.

[115]  Ulrich F. Keyser,et al.  Digitally encoded DNA nanostructures for multiplexed, single-molecule protein sensing with nanopores. , 2016, Nature nanotechnology.

[116]  Yong Wang,et al.  Single-nanoparticle near-infrared surface plasmon resonance microscopy for real-time measurements of DNA hybridization adsorption. , 2014, ACS nano.

[117]  Carsten Sönnichsen,et al.  A molecular ruler based on plasmon coupling of single gold and silver nanoparticles , 2005, Nature Biotechnology.

[118]  Ardemis A. Boghossian,et al.  Single molecule detection of nitric oxide enabled by d(AT)15 DNA adsorbed to near infrared fluorescent single-walled carbon nanotubes. , 2011, Journal of the American Chemical Society.

[119]  A. Meller,et al.  Plasmonic‐Nanopore Biosensors for Superior Single‐Molecule Detection , 2019, Advanced materials.

[120]  M. Lundstrom,et al.  Ballistic carbon nanotube field-effect transistors , 2003, Nature.

[121]  Herbert Shea,et al.  Single- and multi-wall carbon nanotube field-effect transistors , 1998 .

[122]  Mark C. Leake,et al.  Single-molecule fluorescence microscopy review: shedding new light on old problems , 2017, Bioscience reports.

[123]  Yi Wang,et al.  Magnetic nanoparticle-enhanced biosensor based on grating-coupled surface plasmon resonance. , 2011, Analytical chemistry.

[124]  Mehmet Toner,et al.  Advancing the speed, sensitivity and accuracy of biomolecular detection using multi-length-scale engineering. , 2014, Nature nanotechnology.

[125]  D. Branton,et al.  Characterization of individual polynucleotide molecules using a membrane channel. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[126]  R. Gordon,et al.  A label-free untethered approach to single-molecule protein binding kinetics. , 2014, Nano letters (Print).

[127]  Paul V. Ruijgrok,et al.  Room-Temperature Detection of a Single Molecule’s Absorption by Photothermal Contrast , 2010, Science.

[128]  Noritada Kaji,et al.  Label-free detection of real-time DNA amplification using a nanofluidic diffraction grating , 2016, Scientific Reports.

[129]  J. Tour,et al.  Stepwise Quenching of Exciton Fluorescence in Carbon Nanotubes by Single-Molecule Reactions , 2007, Science.

[130]  Craig Watson,et al.  A Digital-Analog Microfluidic Platform for Patient-Centric Multiplexed Biomarker Diagnostics of Ultralow Volume Samples. , 2016, ACS nano.

[131]  Kyungsuk Yum,et al.  Single‐walled carbon nanotubes as near‐infrared optical biosensors for life sciences and biomedicine , 2015, Biotechnology journal.

[132]  Brian M Stoltz,et al.  Label-free detection of single nanoparticles and biological molecules using microtoroid optical resonators , 2016, Light: Science & Applications.

[133]  M. Orrit,et al.  Optical detection of single non-absorbing molecules using the surface plasmon resonance of a gold nanorod. , 2012, Nature nanotechnology.

[134]  D. Klenerman,et al.  Nanopore extended field-effect transistor for selective single-molecule biosensing , 2017, Nature Communications.

[135]  A. Star,et al.  Carbon Nanotube Field‐Effect‐Transistor‐Based Biosensors , 2007 .

[136]  Zhiping Weng,et al.  Optical recognition of converted DNA nucleotides for single-molecule DNA sequencing using nanopore arrays. , 2010, Nano letters.

[137]  Hsin-Yu Wu,et al.  Label‐Free Optical Single‐Molecule Micro‐ and Nanosensors , 2018, Advanced materials.

[138]  Marc Gershow,et al.  DNA molecules and configurations in a solid-state nanopore microscope , 2003, Nature materials.

[139]  Patrick S Doyle,et al.  Ultrasensitive multiplexed microRNA quantification on encoded gel microparticles using rolling circle amplification. , 2011, Analytical chemistry.

[140]  S. Kingsmore,et al.  Rolling circle amplification: a new approach to increase sensitivity for immunohistochemistry and flow cytometry. , 2001, The American journal of pathology.

[141]  Chih-Ming Ho,et al.  Single-molecule tracing on a fluidic microchip for quantitative detection of low-abundance nucleic acids. , 2005, Journal of the American Chemical Society.

[142]  Nicholas A W Bell,et al.  DNA origami nanopores. , 2012, Nano letters.

[143]  Klaus Pantel,et al.  Clinical Applications of Circulating Tumor Cells and Circulating Tumor DNA as Liquid Biopsy. , 2016, Cancer discovery.

[144]  C. Tardin,et al.  High-throughput single-molecule analysis of DNA–protein interactions by tethered particle motion , 2012, Nucleic acids research.

[145]  Yong Zhao,et al.  A review for optical sensors based on photonic crystal cavities , 2015 .

[146]  Adam Wax,et al.  Label-free plasmonic detection of biomolecular binding by a single gold nanorod. , 2008, Analytical chemistry.

[147]  P. Ashton,et al.  MinION nanopore sequencing identifies the position and structure of a bacterial antibiotic resistance island , 2014, Nature Biotechnology.

[148]  Daniel C. Cole,et al.  Quantitative mass imaging of single biological macromolecules , 2018, Science.

[149]  Romain Quidant,et al.  Plasmon nano-optical tweezers , 2011 .

[150]  H. Tian,et al.  Construction of an aerolysin nanopore in a lipid bilayer for single-oligonucleotide analysis , 2017, Nature Protocols.

[151]  Benjamin J. Hindson,et al.  Evaluation of a Droplet Digital Polymerase Chain Reaction Format for DNA Copy Number Quantification , 2011, Analytical chemistry.

[152]  D. Branton,et al.  Three decades of nanopore sequencing , 2016, Nature Biotechnology.

[153]  Xiao Yang,et al.  Fan-shaped gold nanoantennas above reflective substrates for surface-enhanced infrared absorption (SEIRA). , 2015, Nano letters.

[154]  A. Mandal,et al.  A highly selective and efficient single molecular FRET based sensor for ratiometric detection of Fe3+ ions. , 2013, The Analyst.

[155]  Boubacar Kante,et al.  Symmetry-breaking-induced plasmonic exceptional points and nanoscale sensing , 2020 .

[156]  J. Ruiz-Rodríguez,et al.  Rapid and Digital Detection of Inflammatory Biomarkers Enabled by a Novel Portable Nanoplasmonic Imager. , 2019, Small.

[157]  R. Ismagilov,et al.  Multistep SlipChip for the Generation of Serial Dilution Nanoliter Arrays and Hepatitis B Viral Load Quantification by Digital Loop Mediated Isothermal Amplification. , 2019, Analytical chemistry.

[158]  I. Chantal,et al.  Development of a bead‐based multiplexed assay for simultaneous quantification of five bovine cytokines by flow cytometry , 2017, Cytometry. Part A : the journal of the International Society for Analytical Cytology.

[159]  Xianping Chen,et al.  Carbon nanotube based biosensors , 2015 .

[160]  S. Kelley,et al.  Single Cell mRNA Cytometry via Sequence-Specific Nanoparticle Clustering and Trapping , 2018, Nature Chemistry.

[161]  F. Nicolantonio,et al.  Liquid biopsy: monitoring cancer-genetics in the blood , 2013, Nature Reviews Clinical Oncology.

[162]  Y. Garini,et al.  Preparation of homogeneous samples of double-labelled protein suitable for single-molecule FRET measurements , 2013, Analytical and Bioanalytical Chemistry.

[163]  T. Asano,et al.  Ultra-high-Q photonic double-heterostructure nanocavity , 2005 .

[164]  Jan Wiersig,et al.  Enhancing the Sensitivity of Frequency and Energy Splitting Detection by Using Exceptional Points: Application to Microcavity Sensors for Single-Particle Detection , 2014 .

[165]  Fredrik Höök,et al.  Quartz crystal microbalance setup for frequency and Q‐factor measurements in gaseous and liquid environments , 1995 .

[166]  F. Vollmer,et al.  In Situ Observation of Single‐Molecule Surface Reactions from Low to High Affinities , 2016, Advanced materials.

[167]  Rohan T Ranasinghe,et al.  Ultrarapid generation of femtoliter microfluidic droplets for single-molecule-counting immunoassays. , 2013, ACS nano.

[168]  Xinping Huang,et al.  Label-free imaging, detection, and mass measurement of single viruses by surface plasmon resonance , 2010, Proceedings of the National Academy of Sciences.

[169]  R. Heintzmann,et al.  Superresolution by localization of quantum dots using blinking statistics. , 2005, Optics express.

[170]  A Paul Alivisatos,et al.  Continuous imaging of plasmon rulers in live cells reveals early-stage caspase-3 activation at the single-molecule level , 2009, Proceedings of the National Academy of Sciences.

[171]  J. Gouaux,et al.  Structure of Staphylococcal α-Hemolysin, a Heptameric Transmembrane Pore , 1996, Science.

[172]  Shi-jia Ding,et al.  A simple fluorescence biosensing strategy for ultrasensitive detection of the BCR-ABL1 fusion gene based on a DNA machine and multiple primer-like rolling circle amplification. , 2018, The Analyst.

[173]  Wei Zheng,et al.  Lanthanide-doped upconversion nano-bioprobes: electronic structures, optical properties, and biodetection. , 2015, Chemical Society reviews.

[174]  A. Meller,et al.  Optical sensing and analyte manipulation in solid-state nanopores. , 2015, The Analyst.

[175]  Guangzhong Ma,et al.  Probing Single Molecule Binding and Free Energy Profile with Plasmonic Imaging of Nanoparticles. , 2019, Journal of the American Chemical Society.

[176]  Ke Liu,et al.  Atomically thin molybdenum disulfide nanopores with high sensitivity for DNA translocation. , 2014, ACS nano.

[177]  Ruoshan Wei,et al.  Stochastic sensing of proteins with receptor-modified solid-state nanopores. , 2012, Nature nanotechnology.

[178]  Taylor D. Canady,et al.  Activate capture and digital counting (AC + DC) assay for protein biomarker detection integrated with a self-powered microfluidic cartridge. , 2019, Lab on a chip.

[179]  S. Habraken,et al.  Surface plasmon resonance-based biosensors: From the development of different SPR structures to novel surface functionalization strategies , 2011 .

[180]  Hatice Altug,et al.  Nanoparticle-Enhanced Plasmonic Biosensor for Digital Biomarker Detection in a Microarray. , 2018, ACS nano.

[181]  Qing Peng,et al.  Fluorescence resonant energy transfer biosensor based on upconversion-luminescent nanoparticles. , 2005, Angewandte Chemie.

[182]  H. Bayley,et al.  Protein Detection by Nanopores Equipped with Aptamers , 2012, Journal of the American Chemical Society.

[183]  D. Branton,et al.  The potential and challenges of nanopore sequencing , 2008, Nature Biotechnology.

[184]  H. Haus Waves and fields in optoelectronics , 1983 .

[185]  M. Taniguchi,et al.  Identifying single nucleotides by tunnelling current. , 2010, Nature nanotechnology.

[186]  P. Zijlstra,et al.  Plasmon Rulers as a Probe for Real-Time Microsecond Conformational Dynamics of Single Molecules , 2018, Nano letters.

[187]  Oliver K Castell,et al.  High-throughput optical sensing of nucleic acids in a nanopore array , 2015, Nature nanotechnology.

[188]  Utkan Demirci,et al.  Photonic crystals: emerging biosensors and their promise for point-of-care applications. , 2017, Chemical Society reviews.

[189]  Juan I. Young,et al.  Epigenome-wide meta-analysis of DNA methylation differences in prefrontal cortex implicates the immune processes in Alzheimer’s disease , 2020, Nature Communications.

[190]  Xuefeng Guo,et al.  Carbon nanomaterials field-effect-transistor-based biosensors , 2012 .

[191]  Masateru Taniguchi,et al.  Decoding DNA, RNA and peptides with quantum tunnelling. , 2016, Nature nanotechnology.

[192]  Michael S Strano,et al.  Multimodal optical sensing and analyte specificity using single-walled carbon nanotubes. , 2009, Nature nanotechnology.

[193]  C. Brett,et al.  Electrochemical sensors and biosensors based on redox polymer/carbon nanotube modified electrodes: a review. , 2015, Analytica chimica acta.

[194]  Irena Pekker,et al.  Continuously Tunable Nucleic Acid Hybridization Probes , 2015, Nature Methods.

[195]  B. Reinhard,et al.  Probing DNA Stiffness through Optical Fluctuation Analysis of Plasmon Rulers. , 2015, Nano letters.

[196]  Ardemis A. Boghossian,et al.  Detection of single-molecule H2O2 signaling from epidermal growth factor receptor using fluorescent single-walled carbon nanotubes , 2010, Nature nanotechnology.

[197]  Lan Yang,et al.  Review Label-free detection with high-Q microcavities: a review of biosensing mechanisms for integrated devices , 2012 .

[198]  D. McNabb,et al.  Electrical characterization of protein molecules by a solid-state nanopore. , 2007, Applied physics letters.

[199]  C. Dekker Solid-state nanopores. , 2007, Nature nanotechnology.

[200]  K. Mawatari,et al.  Detection and Characterization of Individual Nanoparticles in a Liquid by Photothermal Optical Diffraction and Nanofluidics. , 2020, Analytical chemistry.

[201]  Filip Braet,et al.  Carbon nanomaterials in biosensors: should you use nanotubes or graphene? , 2010, Angewandte Chemie.

[202]  Z. Siwy,et al.  Nanopore analytics: sensing of single molecules. , 2009, Chemical Society reviews.

[203]  Cheng Yang,et al.  Recent trends in carbon nanomaterial-based electrochemical sensors for biomolecules: A review. , 2015, Analytica chimica acta.

[204]  Lan Yang,et al.  On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh- Q microresonator , 2010 .

[205]  Xiaowei Guo Surface plasmon resonance based biosensor technique: A review , 2012, Journal of biophotonics.

[206]  Yuyuan Tian,et al.  Achieving High Spatial Resolution Surface Plasmon Resonance Microscopy with Image Reconstruction. , 2017, Analytical chemistry.

[207]  Alexander Y. Grosberg,et al.  Electrostatic Focusing of Unlabeled DNA into Nanoscale Pores using a Salt Gradient , 2009, Nature nanotechnology.

[208]  M. Niederweis,et al.  Reading DNA at single-nucleotide resolution with a mutant MspA nanopore and phi29 DNA polymerase , 2012, Nature Biotechnology.

[209]  Chunyang Zhang,et al.  Comparative quantification of nucleic acids using single-molecule detection and molecular beacons. , 2005, The Analyst.

[210]  Mark A Naivar,et al.  Digital analysis and sorting of fluorescence lifetime by flow cytometry , 2010, Cytometry. Part A : the journal of the International Society for Analytical Cytology.

[211]  Muneesh Tewari,et al.  Kinetic fingerprinting to identify and count single nucleic acids , 2015, Nature Biotechnology.

[212]  Zhihong Liu,et al.  Biosensing platform based on fluorescence resonance energy transfer from upconverting nanocrystals to graphene oxide. , 2011, Angewandte Chemie.

[213]  M. Baker Digital PCR hits its stride , 2012, Nature Methods.

[214]  Cees Dekker,et al.  Direct force measurements on DNA in a solid-state nanopore , 2006 .

[215]  Joshua Quick,et al.  Rapid draft sequencing and real-time nanopore sequencing in a hospital outbreak of Salmonella , 2015, Genome Biology.

[216]  C. Dekker,et al.  Single-molecule transport across an individual biomimetic nuclear pore complex. , 2011, Nature nanotechnology.

[218]  Mark A. Naivar,et al.  Single particle high resolution spectral analysis flow cytometry , 2006, Cytometry. Part A : the journal of the International Society for Analytical Cytology.

[219]  Stephen Holler,et al.  Label-free detection of single protein using a nanoplasmonic-photonic hybrid microcavity. , 2013, Nano letters.

[220]  Richard M Leggett,et al.  Nanopore metagenomics enables rapid clinical diagnosis of bacterial lower respiratory infection , 2019, Nature Biotechnology.

[221]  J. M. Scholtz,et al.  Interactions of peptides with a protein pore. , 2005, Biophysical journal.

[222]  Dai-Wen Pang,et al.  Aptamer biosensor based on fluorescence resonance energy transfer from upconverting phosphors to carbon nanoparticles for thrombin detection in human plasma. , 2011, Analytical chemistry.

[223]  Gregory A Weiss,et al.  Single-molecule dynamics of lysozyme processing distinguishes linear and cross-linked peptidoglycan substrates. , 2012, Journal of the American Chemical Society.

[224]  Min-Gon Kim,et al.  Single-Step LRET Aptasensor for Rapid Mycotoxin Detection. , 2018, Analytical chemistry.

[225]  George C. Schatz,et al.  A nanoscale optical biosensor: The long range distance dependence of the localized surface plasmon resonance of noble metal nanoparticles , 2004 .

[226]  Derin Sevenler,et al.  Digital Microarrays: Single-Molecule Readout with Interferometric Detection of Plasmonic Nanorod Labels. , 2018, ACS nano.

[227]  Taylor D. Canady,et al.  Digital-resolution detection of microRNA with single-base selectivity by photonic resonator absorption microscopy , 2019, Proceedings of the National Academy of Sciences.

[228]  S. Lindsay,et al.  Single Molecule Spectroscopy of Amino Acids and Peptides by Recognition Tunneling , 2014, Nature nanotechnology.

[229]  C. Wloka,et al.  Electro-osmotic capture and ionic discrimination of peptide and protein biomarkers with FraC nanopores , 2017, Nature Communications.

[230]  Yadong Li,et al.  Green upconversion nanocrystals for DNA detection. , 2006, Chemical communications.

[231]  Charles M. Lieber,et al.  Local electrical potential detection of DNA by nanowire-nanopore sensors , 2011, Nature nanotechnology.

[232]  Ralph Weissleder,et al.  Magnetic relaxation switches capable of sensing molecular interactions , 2002, Nature Biotechnology.

[233]  Harald Giessen,et al.  Surface-Enhanced Infrared Spectroscopy Using Resonant Nanoantennas. , 2017, Chemical reviews.

[234]  Desheng Chen,et al.  An ultrasensitive flow cytometric immunoassay based on bead surface-initiated template-free DNA extension , 2018, Chemical science.

[235]  C. Dekker,et al.  Label-Free Optical Detection of DNA Translocations through Plasmonic Nanopores , 2018, ACS nano.

[236]  David M. Rissin,et al.  A fully-automated, six-plex single molecule immunoassay for measuring cytokines in blood. , 2015, Journal of immunological methods.

[237]  Joshua B Edel,et al.  Single molecule sensing with solid-state nanopores: novel materials, methods, and applications. , 2013, Chemical Society reviews.

[238]  Jakub Dostalek,et al.  Plasmon-Enhanced Fluorescence Biosensors: a Review , 2013, Plasmonics.

[239]  Ardemis A. Boghossian,et al.  Label-free, single protein detection on a near-infrared fluorescent single-walled carbon nanotube/protein microarray fabricated by cell-free synthesis. , 2011, Nano letters.

[240]  Matthew R Foreman,et al.  Single-molecule nucleic acid interactions monitored on a label-free microcavity biosensor platform. , 2014, Nature nanotechnology.

[241]  Wei C. Jiang,et al.  Cavity optomechanical spring sensing of single molecules , 2015, Nature Communications.

[242]  G. W. Pratt,et al.  Peptide secondary structure modulates single-walled carbon nanotube fluorescence as a chaperone sensor for nitroaromatics , 2011, Proceedings of the National Academy of Sciences.

[243]  S. Howorka,et al.  Sequence-specific detection of individual DNA strands using engineered nanopores , 2001, Nature Biotechnology.

[244]  Q. Quan,et al.  Photonic-plasmonic hybrid single-molecule nanosensor measures the effect of fluorescent labels on DNA-protein dynamics , 2017, Science Advances.

[245]  John A Rogers,et al.  Coupling of plasmonic and optical cavity modes in quasi-three-dimensional plasmonic crystals. , 2011, Nature communications.

[246]  David M. Rissin,et al.  Single-Molecule enzyme-linked immunosorbent assay detects serum proteins at subfemtomolar concentrations , 2010, Nature Biotechnology.

[247]  David A. Matthews,et al.  Real-time, portable genome sequencing for Ebola surveillance , 2016, Nature.

[248]  A Paul Alivisatos,et al.  Use of plasmon coupling to reveal the dynamics of DNA bending and cleavage by single EcoRV restriction enzymes , 2006, Proceedings of the National Academy of Sciences.

[249]  David R Walt,et al.  Protein Counting in Single Cancer Cells. , 2016, Analytical chemistry.

[250]  H. Harney,et al.  Experimental observation of the topological structure of exceptional points. , 2001, Physical review letters.

[251]  David R Walt,et al.  Distinct and long-lived activity states of single enzyme molecules. , 2008, Journal of the American Chemical Society.

[252]  Gregory A Weiss,et al.  Dissecting single-molecule signal transduction in carbon nanotube circuits with protein engineering. , 2013, Nano letters.

[253]  C. Dekker,et al.  Fabrication of solid-state nanopores with single-nanometre precision , 2003, Nature materials.

[254]  Francis Barany,et al.  Approaching real-time molecular diagnostics: single-pair fluorescence resonance energy transfer (spFRET) detection for the analysis of low abundant point mutations in K-ras oncogenes. , 2003, Journal of the American Chemical Society.

[255]  P. Tinnefeld,et al.  Breaking the concentration limit of optical single-molecule detection. , 2014, Chemical Society reviews.

[256]  H. Dai,et al.  Carbon nanotubes in biology and medicine: In vitro and in vivo detection, imaging and drug delivery , 2009, Nano research.

[257]  Hongyuan Chen,et al.  Electrode-free nanopore sensing by DiffusiOptoPhysiology , 2019, Science Advances.

[258]  Andreas Henkel,et al.  Single unlabeled protein detection on individual plasmonic nanoparticles. , 2012, Nano letters.

[259]  Nicholas A Moringo,et al.  Single Particle Tracking: From Theory to Biophysical Applications. , 2017, Chemical reviews.

[260]  Marc Vendrell,et al.  Intracellular glutathione detection using MnO(2)-nanosheet-modified upconversion nanoparticles. , 2011, Journal of the American Chemical Society.

[261]  Jin He,et al.  Identifying single bases in a DNA oligomer with electron tunnelling. , 2010, Nature nanotechnology.

[262]  L. Novotný,et al.  Antennas for light , 2011 .

[263]  Nanoantenna-Microcavity Hybrids with Highly Cooperative Plasmonic-Photonic Coupling. , 2017, Nano letters.

[264]  B. Reinhard,et al.  Monitoring Simultaneous Distance and Orientation Changes in Discrete Dimers of DNA Linked Gold Nanoparticles. , 2009, The journal of physical chemistry. C, Nanomaterials and interfaces.

[265]  L. Lechuga,et al.  Recent advances in nanoplasmonic biosensors: applications and lab-on-a-chip integration , 2017 .

[266]  Taylor D. Canady,et al.  High-Fidelity Single Molecule Quantification in a Flow Cytometer Using Multiparametric Optical Analysis. , 2020, ACS nano.

[267]  C. Dekker,et al.  Paving the way to single-molecule protein sequencing , 2018, Nature Nanotechnology.

[268]  David R Walt,et al.  Digital concentration readout of single enzyme molecules using femtoliter arrays and Poisson statistics. , 2006, Nano letters.

[269]  Menno W J Prins,et al.  Stochastic protein interactions monitored by hundreds of single-molecule plasmonic biosensors. , 2015, Nano letters.

[270]  Mark Akeson,et al.  Single-molecule analysis of DNA-protein complexes using nanopores , 2007, Nature Methods.

[271]  R. Gelfand,et al.  Label-free free-solution nanoaperture optical tweezers for single molecule protein studies. , 2015, The Analyst.

[272]  S. Tans,et al.  Room-temperature transistor based on a single carbon nanotube , 1998, Nature.

[273]  Yong Wang,et al.  Nanopore-based detection of circulating microRNAs in lung cancer patients , 2011, Nature nanotechnology.

[274]  S. Maier Plasmonics: Fundamentals and Applications , 2007 .

[275]  Sang-Hyun Oh,et al.  Nanopore sensing at ultra-low concentrations using single-molecule dielectrophoretic trapping , 2016, Nature Communications.

[276]  Luke P. Lee,et al.  Self-powered integrated microfluidic point-of-care low-cost enabling (SIMPLE) chip , 2017, Science Advances.

[277]  A. Alivisatos,et al.  Reversible Aptamer-Au Plasmon Rulers for Secreted Single Molecules. , 2015, Nano letters.

[278]  A. Meller,et al.  Single-Molecule DNA Methylation Quantification Using Electro-optical Sensing in Solid-State Nanopores. , 2016, ACS nano.

[279]  Volkan Cevher,et al.  Ultrasensitive hyperspectral imaging and biodetection enabled by dielectric metasurfaces , 2019, Nature Photonics.

[280]  M. Kohli,et al.  Expanding the Dynamic Range of Fluorescence Assays through Single-Molecule Counting and Intensity Calibration. , 2018, Journal of the American Chemical Society.

[281]  Hongying Zhu,et al.  Analysis of biomolecule detection with optofluidic ring resonator sensors. , 2007, Optics express.

[282]  U. Keyser Controlling molecular transport through nanopores , 2011, Journal of The Royal Society Interface.

[283]  Alexandre G. Brolo,et al.  Plasmonics for future biosensors , 2012, Nature Photonics.

[284]  M. Tokeshi,et al.  Optimization of the nanofluidic design for label-free detection of biomolecules using a nanowall array , 2017 .

[285]  Yan Li,et al.  Strongly enhanced light-matter interaction in a hybrid photonic-plasmonic resonator , 2012, 1206.2422.

[286]  Benedict Paten,et al.  Improved data analysis for the MinION nanopore sequencer , 2015, Nature Methods.

[287]  Lan Yang,et al.  Exceptional points enhance sensing in an optical microcavity , 2017, Nature.

[288]  David R Walt,et al.  Optical methods for single molecule detection and analysis. , 2013, Analytical chemistry.