The ribosome as a platform for co-translational processing, folding and targeting of newly synthesized proteins

[1]  W. Skach Cellular mechanisms of membrane protein folding , 2009, Nature Structural &Molecular Biology.

[2]  F. Hartl,et al.  Converging concepts of protein folding in vitro and in vivo , 2009, Nature Structural &Molecular Biology.

[3]  T. Inada,et al.  Nascent Peptide-dependent Translation Arrest Leads to Not4p-mediated Protein Degradation by the Proteasome* , 2009, Journal of Biological Chemistry.

[4]  Zoya Ignatova,et al.  Transient ribosomal attenuation coordinates protein synthesis and co-translational folding , 2009, Nature Structural &Molecular Biology.

[5]  Andrey Kosolapov,et al.  Tertiary Interactions within the Ribosomal Exit Tunnel , 2009, Nature Structural &Molecular Biology.

[6]  S. Rospert,et al.  A signal-anchor sequence stimulates signal recognition particle binding to ribosomes from inside the exit tunnel , 2009, Proceedings of the National Academy of Sciences.

[7]  Julio O. Ortiz,et al.  The Native 3D Organization of Bacterial Polysomes , 2009, Cell.

[8]  Jianli Lu,et al.  Electrostatics in the ribosomal tunnel modulate chain elongation rates. , 2008, Journal of molecular biology.

[9]  A. Sickmann,et al.  Ribosome-associated complex binds to ribosomes in close proximity of Rpl31 at the exit of the polypeptide tunnel in yeast. , 2008, Molecular biology of the cell.

[10]  Ian M. Sander,et al.  Cotranslational folding promotes beta-helix formation and avoids aggregation in vivo. , 2008, Journal of molecular biology.

[11]  Ruth Nussinov,et al.  Synonymous mutations and ribosome stalling can lead to altered folding pathways and distinct minima. , 2008, Journal of molecular biology.

[12]  M. Rodnina,et al.  Conformation of the signal recognition particle in ribosomal targeting complexes. , 2008, RNA.

[13]  Patricia L. Clark,et al.  Rare Codons Cluster , 2008, PloS one.

[14]  M. Marín,et al.  Folding at the rhythm of the rare codon beat , 2008, Biotechnology journal.

[15]  Michel Zivy,et al.  Extent of N‐terminal modifications in cytosolic proteins from eukaryotes , 2008, Proteomics.

[16]  A. Bashan,et al.  Correlating ribosome function with high-resolution structures. , 2008, Trends in microbiology.

[17]  D. Boehringer,et al.  Molecular mechanism and structure of Trigger Factor bound to the translating ribosome , 2008, The EMBO journal.

[18]  Wolfgang Wintermeyer,et al.  Signal sequence–independent membrane targeting of ribosomes containing short nascent peptides within the exit tunnel , 2008, Nature Structural &Molecular Biology.

[19]  N. Ban,et al.  A peptide deformylase–ribosome complex reveals mechanism of nascent chain processing , 2008, Nature.

[20]  N. Ban,et al.  Dynamics of Trigger Factor Interaction with Translating Ribosomes* , 2008, Journal of Biological Chemistry.

[21]  T. Meinnel,et al.  Tools for analyzing and predicting N‐terminal protein modifications , 2008, Proteomics.

[22]  Steven P. Brown,et al.  Yeast Nα‐terminal acetyltransferases are associated with ribosomes , 2008 .

[23]  M. Mayer,et al.  Functional Characterization of the Atypical Hsp70 Subunit of Yeast Ribosome-associated Complex* , 2007, Journal of Biological Chemistry.

[24]  Wayne A. Hendrickson,et al.  Insights into Hsp70 Chaperone Activity from a Crystal Structure of the Yeast Hsp110 Sse1 , 2007, Cell.

[25]  Jianli Lu,et al.  Mapping the electrostatic potential within the ribosomal exit tunnel. , 2007, Journal of molecular biology.

[26]  F. Hartl,et al.  Identification of Nascent Chain Interaction Sites on Trigger Factor* , 2007, Journal of Biological Chemistry.

[27]  S. Rospert,et al.  Association of Protein Biogenesis Factors at the Yeast Ribosomal Tunnel Exit Is Affected by the Translational Status and Nascent Polypeptide Sequence* , 2007, Journal of Biological Chemistry.

[28]  T. Inada,et al.  Translation of the poly(A) tail plays crucial roles in nonstop mRNA surveillance via translation repression and protein destabilization by proteasome in yeast. , 2007, Genes & development.

[29]  C. Georgopoulos,et al.  Trigger Factor can antagonize both SecB and DnaK/DnaJ chaperone functions in Escherichia coli , 2007, Proceedings of the National Academy of Sciences.

[30]  R. Hartmann-Petersen,et al.  Characterisation of the nascent polypeptide-associated complex in fission yeast , 2007, Molecular Biology Reports.

[31]  Andreas Bracher,et al.  Fes1p acts as a nucleotide exchange factor for the ribosome-associated molecular chaperone Ssb1p , 2006, Biological chemistry.

[32]  Thomas Becker,et al.  Following the signal sequence from ribosomal tunnel exit to signal recognition particle , 2006, Nature.

[33]  J. Abrahams,et al.  Structure of the E. coli signal recognition particle bound to a translating ribosome , 2006, Nature.

[34]  F. Hartl,et al.  Real-time observation of trigger factor function on translating ribosomes , 2006, Nature.

[35]  B. Bukau,et al.  The C-terminal Domain of Escherichia coli Trigger Factor Represents the Central Module of Its Chaperone Activity* , 2006, Journal of Biological Chemistry.

[36]  J. Frank,et al.  Structure of the E. coli protein-conducting channel bound to a translating ribosome , 2006, Nature.

[37]  M. Ehrenberg,et al.  Trigger Factor Binding to Ribosomes with Nascent Peptide Chains of Varying Lengths and Sequences* , 2006, Journal of Biological Chemistry.

[38]  M Gerstein,et al.  The geometry of the ribosomal polypeptide exit tunnel. , 2006, Journal of molecular biology.

[39]  H. Bernstein,et al.  Translation arrest requires two-way communication between a nascent polypeptide and the ribosome. , 2006, Molecular cell.

[40]  Bernd Bukau,et al.  Chaperone network in the yeast cytosol: Hsp110 is revealed as an Hsp70 nucleotide exchange factor , 2006, The EMBO journal.

[41]  Koreaki Ito,et al.  Genetically encoded but nonpolypeptide prolyl-tRNA functions in the A site for SecM-mediated ribosomal stall. , 2006, Molecular cell.

[42]  J. Brunner,et al.  Sequence-specific Interactions of Nascent Escherichia coli Polypeptides with Trigger Factor and Signal Recognition Particle* , 2006, Journal of Biological Chemistry.

[43]  Matthias Müller,et al.  Alternate Recruitment of Signal Recognition Particle and Trigger Factor to the Signal Sequence of a Growing Nascent Polypeptide* , 2006, Journal of Biological Chemistry.

[44]  B. Bukau,et al.  Trigger Factor Forms a Protective Shield for Nascent Polypeptides at the Ribosome* , 2006, Journal of Biological Chemistry.

[45]  D. Hofmann,et al.  A Conserved Motif Is Prerequisite for the Interaction of NAC with Ribosomal Protein L23 and Nascent Chains* , 2006, Journal of Biological Chemistry.

[46]  J. Frydman,et al.  Systems Analyses Reveal Two Chaperone Networks with Distinct Functions in Eukaryotic Cells , 2006, Cell.

[47]  F. Hartl,et al.  Exploring the capacity of trigger factor to function as a shield for ribosome bound polypeptide chains , 2006, FEBS letters.

[48]  J. Frydman,et al.  Hsp110 Cooperates with Different Cytosolic HSP70 Systems in a Pathway for de Novo Folding* , 2005, Journal of Biological Chemistry.

[49]  Jianli Lu,et al.  Folding zones inside the ribosomal exit tunnel , 2005, Nature Structural &Molecular Biology.

[50]  J. Holton,et al.  Structures of the Bacterial Ribosome at 3.5 Å Resolution , 2005, Science.

[51]  P. Penczek,et al.  ERj1p uses a universal ribosomal adaptor site to coordinate the 80S ribosome at the membrane , 2005, Nature Structural &Molecular Biology.

[52]  Daniel N. Wilson,et al.  The binding mode of the trigger factor on the ribosome: Implications for protein folding and SRP interaction , 2005, Structure.

[53]  E. Deuerling,et al.  Molecular guardians for newborn proteins: ribosome-associated chaperones and their role in protein folding , 2005, Cellular and Molecular Life Sciences CMLS.

[54]  A. Bashan,et al.  Structure of trigger factor binding domain in biologically homologous complex with eubacterial ribosome reveals its chaperone action. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[55]  P. Jenö,et al.  The chaperones MPP11 and Hsp70L1 form the mammalian ribosome-associated complex. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[56]  E. Craig,et al.  The Hsp70 Ssz1 modulates the function of the ribosome-associated J-protein Zuo1 , 2005, Nature Structural &Molecular Biology.

[57]  E. Craig,et al.  Human Mpp11 J Protein: Ribosome-Tethered Molecular Chaperones Are Ubiquitous , 2005, Science.

[58]  B. Beatrix,et al.  The Crystal Structure of Archaeal Nascent Polypeptide-associated Complex (NAC) Reveals a Unique Fold and the Presence of a Ubiquitin-associated Domain* , 2005, Journal of Biological Chemistry.

[59]  N. Ban,et al.  Trigger factor in complex with the ribosome forms a molecular cradle for nascent proteins , 2004, Nature.

[60]  M. Ehrenberg,et al.  Simultaneous binding of trigger factor and signal recognition particle to the E. coli ribosome. , 2004, Biochimie.

[61]  H. Patzelt,et al.  Functional Dissection of Escherichia coli Trigger Factor: Unraveling the Function of Individual Domains , 2004, Journal of bacteriology.

[62]  T. Meinnel,et al.  Protein N-terminal methionine excision , 2004, Cellular and Molecular Life Sciences CMLS.

[63]  M. Rodnina,et al.  Trigger factor binds to ribosome-signal-recognition particle (SRP) complexes and is excluded by binding of the SRP receptor. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[64]  F. Hartl,et al.  Function of Trigger Factor and DnaK in Multidomain Protein Folding Increase in Yield at the Expense of Folding Speed , 2004, Cell.

[65]  M. Sachs,et al.  A nascent polypeptide domain that can regulate translation elongation , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[66]  Peter J McCormick,et al.  Nascent Membrane and Secretory Proteins Differ in FRET-Detected Folding Far inside the Ribosome and in Their Exposure to Ribosomal Proteins , 2004, Cell.

[67]  Joachim Frank,et al.  Structure of the signal recognition particle interacting with the elongation-arrested ribosome , 2004, Nature.

[68]  R. Stuart,et al.  Yeast Oxa1 interacts with mitochondrial ribosomes: the importance of the C‐terminal region of Oxa1 , 2003, The EMBO journal.

[69]  D. Oliver,et al.  Translocon “Pulling” of Nascent SecM Controls the Duration of Its Translational Pause and Secretion-Responsive secA Regulation , 2003, Journal of bacteriology.

[70]  Matthias Müller,et al.  Ligand crowding at a nascent signal sequence , 2003, The Journal of cell biology.

[71]  M. Gautschi,et al.  The Yeast Nα-Acetyltransferase NatA Is Quantitatively Anchored to the Ribosome and Interacts with Nascent Polypeptides , 2003, Molecular and Cellular Biology.

[72]  J. Rothman,et al.  Suppression of CED-3-independent apoptosis by mitochondrial βNAC in Caenorhabditis elegans , 2003, Nature.

[73]  F. Sherman,et al.  Composition and function of the eukaryotic N-terminal acetyltransferase subunits. , 2003, Biochemical and biophysical research communications.

[74]  M. Ehrenberg,et al.  Interplay of signal recognition particle and trigger factor at L23 near the nascent chain exit site on the Escherichia coli ribosome , 2003, The Journal of cell biology.

[75]  E. Craig,et al.  Ribosome-tethered molecular chaperones: the first line of defense against protein misfolding? , 2003, Current opinion in microbiology.

[76]  Holger Patzelt,et al.  Trigger Factor and DnaK possess overlapping substrate pools and binding specificities , 2003, Molecular microbiology.

[77]  H. Lilie,et al.  Interaction of trigger factor with the ribosome. , 2003, Journal of molecular biology.

[78]  H. Bernstein,et al.  Trigger Factor Retards Protein Export in Escherichia coli* , 2002, The Journal of Biological Chemistry.

[79]  M. Gautschi,et al.  Nascent-polypeptide-associated complex , 2002, Cellular and Molecular Life Sciences CMLS.

[80]  C. Yanofsky,et al.  Instruction of Translating Ribosome by Nascent Peptide , 2002, Science.

[81]  N. Ban,et al.  L23 protein functions as a chaperone docking site on the ribosome , 2002, Nature.

[82]  Jason C. Young,et al.  Prediction of Novel Bag-1 Homologs Based on Structure/Function Analysis Identifies Snl1p as an Hsp70 Co-chaperone in Saccharomyces cerevisiae * , 2002, The Journal of Biological Chemistry.

[83]  M. Pool,et al.  Distinct Modes of Signal Recognition Particle Interaction with the Ribosome , 2002, Science.

[84]  M. Gautschi,et al.  A functional chaperone triad on the yeast ribosome , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[85]  M. Wiedmann,et al.  The in vivo function of the ribosome-associated Hsp70, Ssz1, does not require its putative peptide-binding domain , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[86]  Koreaki Ito,et al.  The Ribosomal Exit Tunnel Functions as a Discriminating Gate , 2002, Cell.

[87]  F. Schmid,et al.  Dynamic association of trigger factor with protein substrates. , 2001, Journal of molecular biology.

[88]  Frank Schluenzen,et al.  High Resolution Structure of the Large Ribosomal Subunit from a Mesophilic Eubacterium , 2001, Cell.

[89]  J. Schneider-Mergener,et al.  Binding specificity of Escherichia coli trigger factor , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[90]  A. Sali,et al.  Architecture of the Protein-Conducting Channel Associated with the Translating 80S Ribosome , 2001, Cell.

[91]  T. Lithgow,et al.  RAC, a stable ribosome-associated complex in yeast formed by the DnaK-DnaJ homologs Ssz1p and zuotin , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[92]  H. Bernstein,et al.  The targeting pathway of Escherichia coli presecretory and integral membrane proteins is specified by the hydrophobicity of the targeting signal , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[93]  D. Botstein,et al.  Genomic expression programs in the response of yeast cells to environmental changes. , 2000, Molecular biology of the cell.

[94]  M. Wiedmann,et al.  The α and β Subunit of the Nascent Polypeptide-associated Complex Have Distinct Functions* , 2000, The Journal of Biological Chemistry.

[95]  T. Steitz,et al.  The structural basis of ribosome activity in peptide bond synthesis. , 2000, Science.

[96]  T. Steitz,et al.  The complete atomic structure of the large ribosomal subunit at 2.4 A resolution. , 2000, Science.

[97]  D. Markesich,et al.  bicaudal encodes the Drosophila beta NAC homolog, a component of the ribosomal translational machinery*. , 2000, Development.

[98]  Long-Fei Wu,et al.  Discrimination between SRP‐ and SecA/SecB‐dependent substrates involves selective recognition of nascent chains by SRP and trigger factor , 2000, The EMBO journal.

[99]  A. Komar,et al.  Synonymous codon substitutions affect ribosome traffic and protein folding during in vitro translation , 1999, FEBS letters.

[100]  S. Rospert,et al.  Nascent polypeptide-associated complex stimulates protein import into yeast mitochondria. , 1999, Molecular biology of the cell.

[101]  E. Hartmann,et al.  Initial characterization of the nascent polypeptide‐associated complex in yeast , 1999, Yeast.

[102]  M. Wiedmann,et al.  A general mechanism for regulation of access to the translocon: competition for a membrane attachment site on ribosomes. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[103]  E. Craig,et al.  Zuotin, a ribosome‐associated DnaJ molecular chaperone , 1998, The EMBO journal.

[104]  M. Wiedmann,et al.  The molecular chaperone Ssb from Saccharomyces cerevisiae is a component of the ribosome–nascent chain complex , 1998, The EMBO journal.

[105]  G. Heijne,et al.  Nascent membrane and presecretory proteins synthesized in Escherichia coli associate with signal recognition particle and trigger factor , 1997, Molecular microbiology.

[106]  P Argos,et al.  Protein secondary structural types are differentially coded on messenger RNA , 1996, Protein science : a publication of the Protein Society.

[107]  G. Kreibich,et al.  The intrinsic ability of ribosomes to bind to endoplasmic reticulum membranes is regulated by signal recognition particle and nascent-polypeptide-associated complex. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[108]  J. Deng,et al.  An insertional mutation in theBTF3 transcription factor gene leads to an early postimplantation lethality in mice , 1995, Transgenic Research.

[109]  M. Wiedmann,et al.  Nascent polypeptide-associated complex protein prevents mistargeting of nascent chains to the endoplasmic reticulum. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[110]  Yie-Hwa Chang,et al.  Evidence that two zinc fingers in the methionine aminopeptidase from Saccharomyces cerevisiae are important for normal growth , 1995, Molecular and General Genetics MGG.

[111]  M. Wiedmann,et al.  A protein complex required for signal-sequence-specific sorting and translocation , 1994, Nature.

[112]  A. Brown,et al.  Protein folding within the cell is influenced by controlled rates of polypeptide elongation. , 1992, Journal of molecular biology.

[113]  M. Werner-Washburne,et al.  The translation machinery and 70 kd heat shock protein cooperate in protein synthesis , 1992, Cell.

[114]  O. W. Odom,et al.  Fluorescence characterization of the environment encountered by nascent polyalanine and polyserine as they exit Escherichia coli ribosomes during translation. , 1992, Biochemistry.

[115]  R. Bradshaw,et al.  Rat liver polysome N alpha-acetyltransferase: isolation and characterization. , 1991, Biochemistry.

[116]  R. M. Green,et al.  Acetylation of peptidyl-tRNA on rat liver polyribosomes. , 1978, Canadian journal of biochemistry.

[117]  H C Pitot,et al.  Acetylation of nascent polypeptide chains on rat liver polyribosomes in vivo and in vitro. , 1975, Biochemistry.

[118]  P. Kaesberg,et al.  Cleavage of the N-terminal formylmethionine residue from a bacteriophage coat protein in vitro. , 1973, Journal of molecular biology.

[119]  M. J. Pine Kinetics of maturation of the amino termini of the cell proteins of Escherichia coli. , 1969, Biochimica et biophysica acta.

[120]  J. M. Adams,et al.  On the release of the formyl group from nascent protein. , 1968, Journal of molecular biology.

[121]  A. Rich,et al.  Partial resistance of nascent polypeptide chains to proteolytic digestion due to ribosomal shielding. , 1967, Journal of molecular biology.

[122]  K. Turksen,et al.  Isolation and characterization , 2006 .

[123]  Joseph A. Vetro,et al.  Yeast methionine aminopeptidase type 1 is ribosome‐associated and requires its N‐terminal zinc finger domain for normal function in vivo * , 2002, Journal of cellular biochemistry.

[124]  K. Ito,et al.  Secretion monitor, SecM, undergoes self-translation arrest in the cytosol. , 2001, Molecular cell.

[125]  R. Stroud,et al.  The signal recognition particle. , 2001, Annual review of biochemistry.

[126]  F. Schmid,et al.  Cooperation of enzymatic and chaperone functions of trigger factor in the catalysis of protein folding , 1997, The EMBO journal.

[127]  John C. Wyngaard,et al.  Structure of the PBL , 1988 .

[128]  R. Palmiter,et al.  Ovalbumin: a secreted protein without a transient hydrophobic leader sequence. , 1978, Proceedings of the National Academy of Sciences of the United States of America.

[129]  K. T. Fry,et al.  Amidohydrolase activity of Escherichia coli extracts with formylated amino acids and dipeptides as substrates. , 1967, Journal of molecular biology.

[130]  Lippincott-Schwartz,et al.  Supporting Online Material Materials and Methods Som Text Figs. S1 to S8 Table S1 Movies S1 to S3 a " Silent " Polymorphism in the Mdr1 Gene Changes Substrate Specificity Corrected 30 November 2007; See Last Page , 2022 .