Upscaling of integrated photoelectrochemical water-splitting devices to large areas

Photoelectrochemical water splitting promises both sustainable energy generation and energy storage in the form of hydrogen. However, the realization of this vision requires laboratory experiments to be engineered into a large-scale technology. Up to now only few concepts for scalable devices have been proposed or realized. Here we introduce and realize a concept which, by design, is scalable to large areas and is compatible with multiple thin-film photovoltaic technologies. The scalability is achieved by continuous repetition of a base unit created by laser processing. The concept allows for independent optimization of photovoltaic and electrochemical part. We demonstrate a fully integrated, wireless device with stable and bias-free operation for 40 h. Furthermore, the concept is scaled to a device area of 64 cm2 comprising 13 base units exhibiting a solar-to-hydrogen efficiency of 3.9%. The concept and its successful realization may be an important contribution towards the large-scale application of artificial photosynthesis.

[1]  Nathan S. Lewis,et al.  A monolithically integrated, intrinsically safe, 10% efficient, solar-driven water-splitting system based on active, stable earth-abundant electrocatalysts in conjunction with tandem III–V light absorbers protected by amorphous TiO2 films , 2015 .

[2]  J. J. Hanak Monolithic solar cell panel of amorphous silicon , 1979 .

[3]  R. DeBlasio,et al.  Optimization of a-Si solar cell current collection , 1982 .

[4]  D. Nocera,et al.  Wireless Solar Water Splitting Using Silicon-Based Semiconductors and Earth-Abundant Catalysts , 2011, Science.

[5]  Valerio Romano,et al.  A monolithically integrated high‐efficiency Cu(In,Ga)Se2 mini‐module structured solely by laser , 2015 .

[6]  Sang Il Seok,et al.  High-performance photovoltaic perovskite layers fabricated through intramolecular exchange , 2015, Science.

[7]  Nelson A. Kelly,et al.  Design and characterization of a robust photoelectrochemical device to generate hydrogen using solar water splitting , 2006 .

[8]  Xuanzhi Wu,et al.  High-efficiency polycrystalline CdTe thin-film solar cells , 2004 .

[9]  Martin A. Green,et al.  Solar cell efficiency tables (version 47) , 2016 .

[10]  G. N. Baum,et al.  Technical and economic feasibility of centralized facilities for solar hydrogen production via photocatalysis and photoelectrochemistry , 2013 .

[11]  Mohammad Khaja Nazeeruddin,et al.  Water photolysis at 12.3% efficiency via perovskite photovoltaics and Earth-abundant catalysts , 2014, Science.

[12]  Heather Booth,et al.  Laser Processing in Industrial Solar Module Manufacturing , 2010 .

[13]  Lukas Schmidt-Mende,et al.  Photocatalytic Reduction of CO2 on TiO2 and Other Semiconductors , 2013 .

[14]  Lydia Helena Wong,et al.  Targeting Ideal Dual‐Absorber Tandem Water Splitting Using Perovskite Photovoltaics and CuInxGa1‐xSe2 Photocathodes , 2015 .

[15]  Markus Antonietti,et al.  Nickel nitride as an efficient electrocatalyst for water splitting , 2015 .

[16]  T. Razykov,et al.  Solar photovoltaic electricity: Current status and future prospects , 2011 .

[17]  R. C. Kainthla,et al.  One step method to produce hydrogen by a triple stack amorphous silicon solar cell , 1989 .

[18]  Thomas Hannappel,et al.  Efficient direct solar-to-hydrogen conversion by in situ interface transformation of a tandem structure , 2015, Nature Communications.

[19]  John A. Turner,et al.  High-efficiency integrated multijunction photovoltaic/electrolysis systems for hydrogen production , 2001 .

[20]  E. Yablonovitch,et al.  Limiting efficiency of silicon solar cells , 1984, IEEE Transactions on Electron Devices.

[21]  O. J. Murphy,et al.  An amorphous silicon-based one-unit photovoltaic electrolyzer , 1985 .

[22]  Roel van de Krol,et al.  Water-Splitting Catalysis and Solar Fuel Devices: Artificial Leaves on the Move , 2014 .

[23]  Todd G. Deutsch,et al.  Sunlight absorption in water – efficiency and design implications for photoelectrochemical devices , 2014 .

[24]  Bugra Turan,et al.  Scribe Width Optimization of Absorber Laser Ablation for Thin-film Silicon Solar Modules , 2013 .

[25]  Charles C. L. McCrory,et al.  Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices. , 2015, Journal of the American Chemical Society.

[26]  Frances A. Houle,et al.  Opportunities to improve the net energy performance of photoelectrochemical water-splitting technology , 2016 .

[27]  James R. McKone,et al.  Solar water splitting cells. , 2010, Chemical reviews.

[28]  Minglong Zhang,et al.  Photoelectrochemical cells for solar hydrogen production: current state of promising photoelectrodes, methods to improve their properties, and outlook , 2013 .

[29]  Joel W. Ager,et al.  Net primary energy balance of a solar-driven photoelectrochemical water-splitting device , 2013 .

[30]  G. Peharz,et al.  Solar hydrogen production by water splitting with a conversion efficiency of 18 , 2007 .

[31]  Bernhard Kaiser,et al.  Multijunction Si photocathodes with tunable photovoltages from 2.0 V to 2.8 V for light induced water splitting , 2016 .

[32]  Ib Chorkendorff,et al.  Molybdenum sulfides—efficient and viable materials for electro - and photoelectrocatalytic hydrogen evolution , 2012 .

[33]  Matthew R. Shaner,et al.  A comparative technoeconomic analysis of renewable hydrogen production using solar energy , 2016 .

[34]  Roel van de Krol,et al.  Water-splitting catalysis and solar fuel devices: artificial leaves on the move. , 2013, Angewandte Chemie.

[35]  Mamoru Mizuhashi,et al.  Texture Morphology of SnO2:F Films and Cell Reflectance , 1988 .

[36]  Eric L. Miller,et al.  High-efficiency photoelectrochemical hydrogen production using multijunction amorphous silicon photoelectrodes , 1998 .

[37]  Todd G. Deutsch,et al.  Solar-to-hydrogen efficiency: shining light on photoelectrochemical device performance , 2016 .

[38]  Stephan Buecheler,et al.  Fabrication of flexible CdTe solar modules with monolithic cell interconnection , 2011 .

[39]  M. Grätzel,et al.  A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films , 1991, Nature.

[40]  Thomas F. Jaramillo,et al.  Accelerating materials development for photoelectrochemical hydrogen production: Standards for methods, definitions, and reporting protocols , 2010 .

[41]  Bernhard Kaiser,et al.  a-Si:H/µc-Si:H tandem junction based photocathodes with high open-circuit voltage for efficient hydrogen production , 2014 .

[42]  Arnold J. Forman,et al.  Modeling practical performance limits of photoelectrochemical water splitting based on the current state of materials research. , 2014, ChemSusChem.

[43]  Aad Gordijn,et al.  High potential of thin (<1 µm) a‐Si: H/µc‐Si:H tandem solar cells , 2010 .

[44]  Jürgen H. Werner,et al.  Radiative efficiency limits of solar cells with lateral band-gap fluctuations , 2004 .

[45]  Wei Xing,et al.  NiSe Nanowire Film Supported on Nickel Foam: An Efficient and Stable 3D Bifunctional Electrode for Full Water Splitting. , 2015, Angewandte Chemie.

[46]  Helmut Stiebig,et al.  High speed laser processing for monolithical series connection of silicon thin‐film modules , 2008 .

[47]  S. Haas,et al.  Impact of scribe width reduction on the back-contact insulation process for the series connection of thin-film silicon solar cells , 2015 .

[48]  N. Lewis,et al.  Powering the planet: Chemical challenges in solar energy utilization , 2006, Proceedings of the National Academy of Sciences.

[49]  Brian D. James,et al.  Technoeconomic Analysis of Photoelectrochemical (PEC) Hydrogen Production , 2009 .

[50]  Sasha Omanovic,et al.  Characterization of Ni, NiMo, NiW and NiFe electroactive coatings as electrocatalysts for hydrogen evolution in an acidic medium , 2005 .

[51]  Marika Edoff,et al.  CIGS based devices for solar hydrogen production spanning from PEC-cells to PV-electrolyzers: A comparison of efficiency, stability and device topology , 2015 .

[52]  Alan C. O'Connor,et al.  Retrospective benefit-cost evaluation of DOE investment in photovoltaic energy systems , 2010 .

[53]  Matthew R. Shaner,et al.  Experimental demonstrations of spontaneous, solar-driven photoelectrochemical water splitting , 2015 .

[54]  Hellmut Fritzsche,et al.  Development in Understanding and Controlling the Staebler-Wronski Effect in a-Si:H , 2001 .

[55]  Tonio Buonassisi,et al.  Ten-percent solar-to-fuel conversion with nonprecious materials , 2014, Proceedings of the National Academy of Sciences.

[56]  Turner,et al.  A monolithic photovoltaic-photoelectrochemical device for hydrogen production via water splitting , 1998, Science.

[57]  Eiji Suzuki,et al.  One chip photovoltaic water electrolysis device , 2003 .

[58]  Thomas F. Jaramillo,et al.  Amorphous Molybdenum Sulfide Catalysts for Electrochemical Hydrogen Production: Insights into the Origin of their Catalytic Activity , 2012 .

[59]  Luca Boarino,et al.  Monolithic Cells for Solar Fuels. , 2015 .

[60]  K Ann McKibbon,et al.  Current status and future prospects. , 2008, Health information and libraries journal.

[61]  Marika Edoff,et al.  A theoretical analysis of optical absorption limits and performance of tandem devices and series interconnected architectures for solar hydrogen production , 2015 .

[62]  D. Staebler,et al.  Reversible conductivity changes in discharge‐produced amorphous Si , 1977 .

[63]  Chengxiang Xiang,et al.  Modeling, simulation, and fabrication of a fully integrated, acid-stable, scalable solar-driven water-splitting system. , 2015, ChemSusChem.

[64]  Christophe Ballif,et al.  Laser-Scribing Patterning for the Production of Organometallic Halide Perovskite Solar Modules , 2015, IEEE Journal of Photovoltaics.

[65]  L. Fanni,et al.  Thin-film silicon solar cells applying optically decoupled back reflectors , 2013 .

[66]  Nathan S. Lewis,et al.  Modeling, simulation, and design criteria for photoelectrochemical water-splitting systems , 2012 .

[67]  A. Fujishima,et al.  Electrochemical Photolysis of Water at a Semiconductor Electrode , 1972, Nature.

[68]  Seiichi Kiyama,et al.  Laser Patterning Method for Integrated Type a-Si Solar Cell Submodules , 1986 .