Global well‐posedness for the one‐phase Muskat problem

The free boundary problem for a two-dimensional fluid filtered in porous media is studied. This is known as the one-phase Muskat problem and is mathematically equivalent to the vertical Hele-Shaw problem driven by gravity force. We prove that if the initial free boundary is the graph of a periodic Lipschitz function, then there exists a global-in-time Lipschitz solution in the strong L∞t L 2 x sense and it is the unique viscosity solution. The proof requires quantitative estimates for layer potentials and pointwise elliptic regularity in Lipschitz domains. This is the first construction of unique global strong solutions for the Muskat problem with initial data of arbitrary size.

[1]  Charles Fefferman,et al.  Rayleigh-Taylor breakdown for the Muskat problem with applications to water waves , 2011, 1102.1902.

[2]  Hongjie Dong Gradient Estimates for Parabolic and Elliptic Systems from Linear Laminates , 2012, Archive for Rational Mechanics and Analysis.

[3]  Xinfu Chen,et al.  The Hele-Shaw problem and area-preserving curve-shortening motions , 1993 .

[4]  Inwon C. Kim,et al.  Local regularization of the one-phase hele-shaw flow , 2009 .

[5]  C. Fefferman,et al.  Splash Singularities for the One-Phase Muskat Problem in Stable Regimes , 2013, 1311.7653.

[6]  Robert M. Strain,et al.  On the global existence for the Muskat problem , 2010, 1007.3744.

[7]  Robert M. Strain,et al.  Absence of splash singularities for surface quasi-geostrophic sharp fronts and the Muskat problem , 2013, Proceedings of the National Academy of Sciences.

[8]  A. Córdoba,et al.  Interface evolution: the Hele-Shaw and Muskat problems , 2008, 0806.2258.

[9]  Stephen Cameron Global well-posedness for the two-dimensional Muskat problem with slope less than 1 , 2017, Analysis & PDE.

[10]  Gabriele Eisenhauer,et al.  Multiple Integrals In The Calculus Of Variations And Nonlinear Elliptic Systems , 2016 .

[11]  Antonio Córdoba,et al.  Porous media: The Muskat problem in three dimensions , 2013 .

[12]  J. Lions Quelques méthodes de résolution de problèmes aux limites non linéaires , 1969 .

[13]  L. Silvestre On the differentiability of the solution to the Hamilton–Jacobi equation with critical fractional diffusion , 2009, 0911.5147.

[14]  D. Córdoba,et al.  Contour Dynamics of Incompressible 3-D Fluids in a Porous Medium with Different Densities , 2007 .

[15]  G. Verchota Layer potentials and regularity for the Dirichlet problem for Laplace's equation in Lipschitz domains , 1984 .

[16]  Surface tension stabilization of the Rayleigh-Taylor instability for a fluid layer in a porous medium , 2019, 1911.03331.

[17]  B. Matioc,et al.  The Muskat problem in two dimensions: equivalence of formulations, well-posedness, and regularity results , 2016, Analysis & PDE.

[18]  David M. Ambrose,et al.  The Zero Surface Tension Limit of Two-Dimensional Interfacial Darcy Flow , 2014 .

[19]  Inwon C. Kim,et al.  Regularity for the one-phase Hele-Shaw problem from a Lipschitz initial surface , 2007 .

[20]  Carlos E. Kenig,et al.  The Inhomogeneous Dirichlet Problem in Lipschitz Domains , 1995 .

[21]  H. Nguyen On well-posedness of the Muskat problem with surface tension , 2019, 1907.11552.

[22]  Stephen Cameron Global wellposedness for the 3D Muskat problem with medium size slope. , 2020, 2002.00508.

[23]  P. Constantin,et al.  Global regularity for 2D Muskat equations with finite slope , 2015, 1507.01386.

[24]  C. Fefferman,et al.  Breakdown of Smoothness for the Muskat Problem , 2012, 1201.2525.

[25]  Omar Lazar,et al.  Global well-posedness for the 2D stable Muskat problem in $H^{3/2}$ , 2018, Annales scientifiques de l'École Normale Supérieure.

[26]  Craig T Simmons,et al.  The compleat Darcy: New lessons learned from the first English translation of les fontaines publiques de la Ville de Dijon , 2005, Ground water.

[27]  J. Escher,et al.  On the parabolicity of the Muskat problem: Well-posedness, fingering, and stability results , 2010, 1005.2512.

[28]  'Angel Castro,et al.  Degraded mixing solutions for the Muskat problem , 2018, Calculus of Variations and Partial Differential Equations.

[29]  N. Meunier,et al.  Lyapunov Functions, Identities and the Cauchy Problem for the Hele–Shaw Equation , 2019, Communications in Mathematical Physics.

[30]  F. Gancedo,et al.  Global well-posedness for the 3D Muskat problem in the critical Sobolev space , 2020, 2006.01787.

[31]  Hongjie Dong,et al.  On C1, C2, and weak type-(1,1) estimates for linear elliptic operators , 2016, 1607.04361.

[32]  L. Székelyhidi,et al.  Piecewise Constant Subsolutions for the Muskat Problem , 2017, Communications in Mathematical Physics.

[33]  Inwon C. Kim Uniqueness and Existence Results on the Hele-Shaw and the Stefan Problems , 2003 .

[34]  Thibault de Poyferr'e,et al.  A paradifferential reduction for the gravity-capillary waves system at low regularity and applications , 2015, 1508.00326.

[35]  L. Caffarelli,et al.  A Geometric Approach to Free Boundary Problems , 2005 .

[36]  Robert M. Strain,et al.  On the Muskat problem with viscosity jump: Global in time results , 2017, Advances in Mathematics.

[37]  F. Mengual h-principle for the 2-dimensional incompressible porous media equation with viscosity jump , 2020, Analysis & PDE.

[38]  J. Hiriart-Urruty,et al.  Generalized Hessian matrix and second-order optimality conditions for problems withC1,1 data , 1984 .

[39]  T. Alazard,et al.  Paralinearization of the Muskat Equation and Application to the Cauchy Problem , 2019, Archive for Rational Mechanics and Analysis.

[40]  Daniel Faraco,et al.  Localized Mixing Zone for Muskat Bubbles and Turned Interfaces , 2021, Annals of PDE.

[41]  Thomas Alazard,et al.  On the Cauchy problem for gravity water waves , 2012, 1212.0626.

[42]  Tania Pernas-Castaño,et al.  Non-splat singularity for the one-phase Muskat problem , 2014, 1409.2483.

[43]  Robert M. Strain,et al.  Global Regularity for Gravity Unstable Muskat Bubbles , 2019, 1902.02318.

[44]  Andrej Zlatovs,et al.  A note on stability shifting for the Muskat problem, II: From stable to unstable and back to stable , 2015, 1512.02564.

[45]  David M. Ambrose,et al.  Well-posedness of two-phase Darcy flow in 3D , 2007 .

[46]  B. Pausader,et al.  A Paradifferential Approach for Well-Posedness of the Muskat Problem , 2019, Archive for Rational Mechanics and Analysis.

[47]  Robert M. Strain,et al.  On the Muskat problem: Global in time results in 2D and 3D , 2013, 1310.0953.

[48]  F. Lin,et al.  On the Two‐Dimensional Muskat Problem with Monotone Large Initial Data , 2016, 1603.03949.

[49]  Inwon C. Kim,et al.  Viscosity Solutions for the Two-Phase Stefan Problem , 2010, 1010.4285.

[50]  Mary C. Pugh,et al.  Global solutions for small data to the Hele-Shaw problem , 1993 .

[51]  Absence of Squirt Singularities for the Multi-Phase Muskat Problem , 2009, 0911.4109.

[52]  Luis A. Caffarelli,et al.  Regularity of the free boundary in parabolic phase-transition problems , 1996 .

[53]  P. Lions,et al.  User’s guide to viscosity solutions of second order partial differential equations , 1992, math/9207212.

[54]  J. Duchon,et al.  Évolution d’une interface par capillarité et diffusion de volume I. Existence locale en temps , 1984 .

[55]  C. M. Elliott,et al.  A variational inequality approach to Hele-Shaw flow with a moving boundary , 1981, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[56]  R. Caflisch,et al.  Global existence, singular solutions, and ill‐posedness for the Muskat problem , 2004 .

[57]  L. Caffarelli A harnack inequality approach to the regularity of free boundaries , 1986 .

[58]  P. Flynn,et al.  The Vanishing Surface Tension Limit of the Muskat Problem , 2020, Communications in Mathematical Physics.

[59]  Joachim Escher,et al.  Classical solutions for Hele-Shaw models with surface tension , 1997, Advances in Differential Equations.

[60]  J. Jodeit,et al.  Potential techniques for boundary value problems on C1-domains , 1978 .

[61]  Russell W. Schwab,et al.  Some free boundary problems recast as nonlocal parabolic equations , 2018, Nonlinear Analysis.

[62]  S. Shkoller,et al.  Well-posedness of the Muskat problem with H2 initial data , 2014, 1412.7737.

[63]  S. Zagatti On viscosity solutions of Hamilton-Jacobi equations , 2008 .

[64]  W. C. Krumbein,et al.  The Flow of Homogeneous Fluids through Porous Media , 1938 .

[65]  Luis Silvestre,et al.  Regularity theory for fully nonlinear integro‐differential equations , 2007, 0709.4681.

[66]  Quoc-Hung Nguyen,et al.  Endpoint Sobolev Theory for the Muskat Equation , 2020, Communications in Mathematical Physics.