Are there pre-Quaternary geological analogues for a future greenhouse warming?

Given the inherent uncertainties in predicting how climate and environments will respond to anthropogenic emissions of greenhouse gases, it would be beneficial to society if science could identify geological analogues to the human race’s current grand climate experiment. This has been a focus of the geological and palaeoclimate communities over the last 30 years, with many scientific papers claiming that intervals in Earth history can be used as an analogue for future climate change. Using a coupled ocean–atmosphere modelling approach, we test this assertion for the most probable pre-Quaternary candidates of the last 100 million years: the Mid- and Late Cretaceous, the Palaeocene–Eocene Thermal Maximum (PETM), the Early Eocene, as well as warm intervals within the Miocene and Pliocene epochs. These intervals fail as true direct analogues since they either represent equilibrium climate states to a long-term CO2 forcing—whereas anthropogenic emissions of greenhouse gases provide a progressive (transient) forcing on climate—or the sensitivity of the climate system itself to CO2 was different. While no close geological analogue exists, past warm intervals in Earth history provide a unique opportunity to investigate processes that operated during warm (high CO2) climate states. Palaeoclimate and environmental reconstruction/modelling are facilitating the assessment and calculation of the response of global temperatures to increasing CO2 concentrations in the longer term (multiple centuries); this is now referred to as the Earth System Sensitivity, which is critical in identifying CO2 thresholds in the atmosphere that must not be crossed to avoid dangerous levels of climate change in the long term. Palaeoclimatology also provides a unique and independent way to evaluate the qualities of climate and Earth system models used to predict future climate.

[1]  Pierre Friedlingstein,et al.  Carbon Dioxide and Climate: Perspectives on a Scientific Assessment , 2013 .

[2]  Inez Y. Fung,et al.  Climate Sensitivity: Analysis of Feedback Mechanisms , 2013 .

[3]  L. Partridge,et al.  Current developments at Philosophical Transactions of the Royal Society B , 2012, Philosophical Transactions of the Royal Society B: Biological Sciences.

[4]  Nayun Kim,et al.  Role for topoisomerase 1 in transcription-associated mutagenesis in yeast , 2010, Proceedings of the National Academy of Sciences.

[5]  M. Maslin,et al.  CO2-driven ocean circulation changes as an amplifier of Paleocene-Eocene thermal maximum hydrate destabilization , 2010 .

[6]  Richard B. Alley,et al.  History of sea ice in the Arctic , 2010 .

[7]  W. Landman Climate change 2007: the physical science basis , 2010 .

[8]  M. Maslin,et al.  A Palaeogene perspective on climate sensitivity and methane hydrate instability , 2010, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[9]  M. Collins,et al.  Plio-QUMP (Quantifying Uncertainty in Model Predictions for the Pliocene) , 2010 .

[10]  A. Mackensen,et al.  Alkenone and boron based Pliocene pCO2 records , 2010 .

[11]  A. Ridgwell,et al.  Past constraints on the vulnerability of marine calcifiers to massive carbon dioxide release , 2010 .

[12]  K. Emanuel,et al.  Tropical cyclones and permanent El Niño in the early Pliocene epoch , 2010, Nature.

[13]  A. Tripati,et al.  Coupling of CO2 and Ice Sheet Stability Over Major Climate Transitions of the Last 20 Million Years , 2009, Science.

[14]  D. Kavetski,et al.  On the recent warming in the Murray‐Darling Basin: Land surface interactions misunderstood , 2009 .

[15]  N. Simmons,et al.  Deep mantle forces and the uplift of the Colorado Plateau , 2009 .

[16]  Daniel J. Lunt,et al.  Pliocene Model Intercomparison Project (PlioMIP): experimental design and boundary conditions (Experiment 2) , 2009 .

[17]  G. Dickens,et al.  Carbon dioxide forcing alone insufficient to explain Palaeocene–Eocene Thermal Maximum warming , 2009 .

[18]  M. Siddall,et al.  Atmospheric Carbon Dioxide Concentration Across the Mid-Pleistocene Transition , 2009, Science.

[19]  N. Meinshausen,et al.  Greenhouse-gas emission targets for limiting global warming to 2 °C , 2009, Nature.

[20]  P. Valdes,et al.  Comparison of mid-Pliocene climate predictions produced by the HadAM3 and GCMAM3 General Circulation Models , 2009 .

[21]  David Pollard,et al.  Modelling West Antarctic ice sheet growth and collapse through the past five million years , 2009, Nature.

[22]  G. Kuhn,et al.  Obliquity-paced Pliocene West Antarctic ice sheet oscillations , 2009, Nature.

[23]  Jimin Sun,et al.  New evidence on the age of the Taklimakan Desert , 2009 .

[24]  P. Valdes,et al.  Introduction. Pliocene climate, processes and problems , 2009, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[25]  Reto Knutti,et al.  The equilibrium sensitivity of the Earth's temperature to radiation changes , 2008 .

[26]  M. Kohn,et al.  Miocene tectonics and climate forcing of biodiversity, western United States , 2008 .

[27]  G. Jiménez-Moreno,et al.  Vegetation, climate and palaeoaltitude reconstructions of the Eastern Alps during the Miocene based on pollen records from Austria, Central Europe , 2008 .

[28]  Daniel J. Lunt,et al.  Late Pliocene Greenland glaciation controlled by a decline in atmospheric CO2 levels , 2008, Nature.

[29]  E. Guilyardi,et al.  ENSO at 6ka and 21ka from ocean–atmosphere coupled model simulations , 2008 .

[30]  T. Stocker,et al.  High-resolution carbon dioxide concentration record 650,000–800,000 years before present , 2008, Nature.

[31]  T. Stocker,et al.  Orbital and millennial-scale features of atmospheric CH4 over the past 800,000 years , 2008, Nature.

[32]  P. Valdes,et al.  A new global biome reconstruction and data‐model comparison for the Middle Pliocene , 2008 .

[33]  K. Farley,et al.  Unroofing, incision, and uplift history of the southwestern Colorado Plateau from apatite (U-Th)/He thermochronometry , 2008 .

[34]  V. Masson‐Delmotte,et al.  Target atmospheric CO2: Where should humanity aim? , 2008, 0804.1126.

[35]  A. Ridgwell,et al.  Sedimentary response to Paleocene-Eocene Thermal Maximum carbon release: A model-data comparison , 2008 .

[36]  P. Valdes,et al.  The Late Cretaceous continental interior of Siberia: A challenge for climate models , 2008 .

[37]  T. Harrison,et al.  Timing and processes of Himalayan and Tibetan uplift , 2008 .

[38]  Gerald R. Dickens,et al.  An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics , 2008, Nature.

[39]  D. Dilcher,et al.  The impact of Miocene atmospheric carbon dioxide fluctuations on climate and the evolution of terrestrial ecosystems , 2008, Proceedings of the National Academy of Sciences.

[40]  G. Dickens,et al.  Environmental precursors to rapid light carbon injection at the Palaeocene/Eocene boundary , 2007, Nature.

[41]  A. Ridgwell Interpreting transient carbonate compensation depth changes by marine sediment core modeling , 2007 .

[42]  M. Crucifix,et al.  Using the past to constrain the future: how the palaeorecord can improve estimates of global warming , 2007, 1204.4807.

[43]  V. Mosbrugger,et al.  A Late Miocene climate model simulation with ECHAM4/ML and its quantitative validation with terrestrial proxy data , 2007 .

[44]  P. Valdes,et al.  Modelling Late Oligocene C4 grasses and climate , 2007 .

[45]  Julia C. Hargreaves,et al.  Regulation of atmospheric CO2 by deep‐sea sediments in an Earth system model , 2007 .

[46]  P. Valdes,et al.  Closure of the Panama Seaway during the Pliocene: implications for climate and Northern Hemisphere glaciation , 2006 .

[47]  J. Zachos,et al.  Reversed deep-sea carbonate ion basin gradient during Paleocene-Eocene thermal maximum , 2006 .

[48]  S. Flögel,et al.  Evaporites and the salinity of the ocean during the Phanerozoic: Implications for climate, ocean circulation and life , 2006 .

[49]  David C. Smith,et al.  Arctic hydrology during global warming at the Palaeocene/Eocene thermal maximum , 2006, Nature.

[50]  V. Mosbrugger,et al.  Late Miocene climate in the circum-Alpine realm—a quantitative analysis of terrestrial palaeofloras , 2006 .

[51]  M. Huber,et al.  Arctic hydrology during global warming at the Palaeocene/Eocene thermal maximum , 2006, Nature.

[52]  L. K. Gohar,et al.  Radiative forcing by well-mixed greenhouse gases: Estimates from climate models in the Intergovernme , 2006 .

[53]  A. Schmittner,et al.  Simulating the impact of the Panamanian seaway closure on ocean circulation, marine productivity and nutrient cycling , 2006 .

[54]  David C. Smith,et al.  The Cenozoic palaeoenvironment of the Arctic Ocean , 2006, Nature.

[55]  D. Schrag,et al.  Beyond methane: Towards a theory for the Paleocene-Eocene Thermal Maximum , 2006 .

[56]  J. Annan,et al.  Using multiple observationally‐based constraints to estimate climate sensitivity , 2006 .

[57]  T. Stocker,et al.  Stable Carbon Cycle–Climate Relationship During the Late Pleistocene , 2005, Science.

[58]  V. Mosbrugger,et al.  Cenozoic continental climatic evolution of Central Europe. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[59]  D. Garbe‐Schönberg,et al.  Final closure of Panama and the onset of northern hemisphere glaciation , 2005 .

[60]  J. Zachos,et al.  Marked Decline in Atmospheric Carbon Dioxide Concentrations During the Paleogene , 2005, Science.

[61]  T. Bralower,et al.  Sedimentary trace element constraints on the role of North Atlantic Igneous Province volcanism in late Paleocene–early Eocene environmental change , 2005 .

[62]  A. Ridgwell A Mid Mesozoic Revolution in the regulation of ocean chemistry , 2005 .

[63]  J. Zachos,et al.  Rapid Acidification of the Ocean During the Paleocene-Eocene Thermal Maximum , 2005, Science.

[64]  Myles R. Allen,et al.  Constraining climate forecasts: The role of prior assumptions , 2005 .

[65]  M. Raymo,et al.  A Pliocene‐Pleistocene stack of 57 globally distributed benthic δ18O records , 2005 .

[66]  D. Beerling,et al.  A humid climate state during the Palaeocene/Eocene thermal maximum , 2004, Nature.

[67]  D. Lea,et al.  Middle Miocene Southern Ocean Cooling and Antarctic Cryosphere Expansion , 2004, Science.

[68]  J. English,et al.  The Laramide Orogeny: What Were the Driving Forces? , 2004 .

[69]  A. Malthe-Sørenssen,et al.  Release of methane from a volcanic basin as a mechanism for initial Eocene global warming , 2004, Nature.

[70]  W. Peltier GLOBAL GLACIAL ISOSTASY AND THE SURFACE OF THE ICE-AGE EARTH: The ICE-5G (VM2) Model and GRACE , 2004 .

[71]  D. Lunt,et al.  Modelling Pliocene Warmth: Contribution of Atmosphere, Oceans and Cryosphere Revisited , 2004 .

[72]  J. Zachos,et al.  Early Cenozoic decoupling of the global carbon and sulfur cycles , 2003 .

[73]  Michael W. Wara,et al.  A Transient Rise in Tropical Sea Surface Temperature During the Paleocene-Eocene Thermal Maximum , 2003, Science.

[74]  K. Caldeira,et al.  Oceanography: Anthropogenic carbon and ocean pH , 2003, Nature.

[75]  J. Wright,et al.  A case for a comet impact trigger for the Paleocene/Eocene thermal maximum and carbon isotope excursion , 2003 .

[76]  P. Valdes,et al.  Constant elevation of southern Tibet over the past 15 million years , 2003, Nature.

[77]  S. Dworkin,et al.  Paleosol barometer indicates extreme fluctuations in atmospheric CO2 across the Cretaceous-Tertiary boundary , 2002 .

[78]  Shuzhen Peng,et al.  Onset of Asian desertification by 22 Myr ago inferred from loess deposits in China , 2002, Nature.

[79]  M. Maslin,et al.  Balancing the deglacial global carbon budget: the hydrate factor , 2001 .

[80]  P. B. Duffy,et al.  Anthropogenic carbon and ocean pH , 2001 .

[81]  Michael E. Schlesinger,et al.  Objective estimation of the probability density function for climate sensitivity , 2001 .

[82]  N. Bartelt,et al.  Vacancies in solids and the stability of surface morphology , 2001, Nature.

[83]  L. Sloan,et al.  Trends, Rhythms, and Aberrations in Global Climate 65 Ma to Present , 2001, Science.

[84]  P. Valdes,et al.  Regional warming: Pliocene (3 Ma) paleoclimate of Europe and the Mediterranean , 2000 .

[85]  R. Betts,et al.  Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model , 2000, Nature.

[86]  P. Pearson,et al.  Atmospheric carbon dioxide concentrations over the past 60 million years , 2000, Nature.

[87]  P. Valdes,et al.  Global scale palaeoclimate reconstruction of the middle Pliocene climate using the UKMO GCM: initial results , 2000 .

[88]  K. M. Gregory-Wodzicki,et al.  Uplift history of the Central and Northern Andes: A review , 2000 .

[89]  John F. B. Mitchell,et al.  The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments , 2000 .

[90]  I. Montañez,et al.  A 400 million year carbon isotope record of pedogenic carbonate: Implications for paleoatmospheric carbon dioxide , 1999 .

[91]  R. Betts,et al.  The impact of new land surface physics on the GCM simulation of climate and climate sensitivity , 1999 .

[92]  Martin Wild,et al.  The radiative impact of a simple aerosol climatology on the Hadley Centre atmospheric GCM , 1998 .

[93]  Jonathan M. Gregory,et al.  The climate response to CO2 of the Hadley Centre coupled AOGCM with and without flux adjustment , 1997 .

[94]  D. Gregory,et al.  Parametrization of momentum transport by convection. II: Tests in single‐column and general circulation models , 1997 .

[95]  Aurélie Botta,et al.  Possible role of atmosphere-biosphere interactions in triggering the last glaciation , 1996 .

[96]  J. Spencer Uplift of the Colorado Plateau due to lithosphere attenuation during Laramide low‐angle subduction , 1996 .

[97]  R. Poore,et al.  Middle Pliocene sea surface temperatures: a global reconstruction , 1996 .

[98]  D. Dilcher,et al.  Oak leaves as biosensors of late Neogene and early Pleistocene paleoatmospheric CO2 concentrations , 1996 .

[99]  R. S. Thompson,et al.  Middle Pliocene vegetation: reconstructions, paleoclimatic inferences, and boundary conditions for climate modeling , 1996 .

[100]  A. Slingo,et al.  Studies with a flexible new radiation code. I: Choosing a configuration for a large-scale model , 1996 .

[101]  R. M. Owen,et al.  Dissociation of oceanic methane hydrate as a cause of the carbon isotope excursion at the end of the Paleocene , 1995 .

[102]  H. Cattle,et al.  Modelling Arctic climate change , 1995, Philosophical Transactions of the Royal Society of London. Series A: Physical and Engineering Sciences.

[103]  B. Sellwood,et al.  Cooler estimates of Cretaceous temperatures , 1994, Nature.

[104]  J. A. Wolfe Tertiary climatic changes at middle latitudes of western North America , 1994 .

[105]  Ellen Thomas,et al.  Environmental impact of volcanic margin formation , 1993 .

[106]  W. Briggs,et al.  Microfaunal Evidence for Elevated Pliocene Temperatures in the Arctic Ocean , 1993 .

[107]  Robert S. Thompson,et al.  Micropaleontological Evidence for Increased Meridional Heat Transport in the North Atlantic Ocean During the Pliocene , 1992, Science.

[108]  J. P. Kennett,et al.  Abrupt deep-sea warming, palaeoceanographic changes and benthic extinctions at the end of the Palaeocene , 1991, Nature.

[109]  T. Crowley Are There Any Satisfactory Geologic Analogs for a Future Greenhouse Warming , 1990 .

[110]  Harry J. Dowsett,et al.  High eustatic sea level during the middle Pliocene:Evidence from the southeastern U.S. Atlantic Coastal Plain , 1990 .

[111]  V. A. Zubakov,et al.  Pliocene palaeoclimates: past climates as possible analogues of mid-twenty-first century climate , 1988 .

[112]  J. Hansen,et al.  Global trends of measured surface air temperature , 1987 .

[113]  R. Amato,et al.  Atlantic Coastal Plain , 1981 .

[114]  J. Gilluly,et al.  Principles of Geology , 1969 .

[115]  Zhonghui Liu,et al.  High Earth-system climate sensitivity determined from Pliocene carbon dioxide concentrations , 2010 .

[116]  Mark Williams,et al.  The PRISM3D paleoenvironmental reconstruction , 2010, Stratigraphy.

[117]  Paul J. Valdes,et al.  Earth system sensitivity inferred from Pliocene modelling and data , 2010 .

[118]  K. Mankoff,et al.  PRISM3/GISS Topographic Reconstruction , 2009 .

[119]  M. Collins,et al.  Pliocene Climate and Equifinality , 2009 .

[120]  Hill Characterising ice sheets during the Pliocene: evidence from data and models , 2009 .

[121]  É.,et al.  Pliocene climate , processes and problems , 2008 .

[122]  P. Markwick The palaeogeographic and palaeoclimatic significance of climate proxies for data-model comparisons , 2007 .

[123]  P. Valdes,et al.  Characterizing ice sheets during the Pliocene: evidence from data and models , 2007 .

[124]  H. L. Miller,et al.  Climate Change 2007: The Physical Science Basis , 2007 .

[125]  N. Stern What is the Economics of Climate Change , 2006 .

[126]  S. Dworkin,et al.  Terrestrial Evidence for Two Greenhouse Events in the Latest Cretaceous , 2003 .

[127]  R. Berner,et al.  GEOCARB III : A REVISED MODEL OF ATMOSPHERIC CO 2 OVER PHANEROZOIC TIME , 2001 .

[128]  M. I. Budyko,et al.  Anthropogenic climatic change , 1990 .

[129]  P. Gent,et al.  Isopycnal mixing in ocean circulation models , 1990 .

[130]  J. Quade,et al.  Development of Asian monsoon revealed by marked ecological shift during the latest Miocene in northern Pakistan , 1989, Nature.

[131]  Taro Takahashi,et al.  Climate processes and climate sensitivity , 1984 .

[132]  M. Robinson New quantitative evidence of extreme warmth in the Pliocene Arctic , 2009, Stratigraphy.