scATAC-pro: a comprehensive workbench for single-cell chromatin accessibility sequencing data

Single cell chromatin accessibility sequencing (scCAS) has become a powerful technology for understanding epigenetic heterogeneity of complex tissues. A number of experimental protocols have been developed for scCAS. However, there is a lack of flexible and open-source software tools for comprehensive processing, analysis and visualization of scCAS data generated using all existing experimental protocols. Here we present scATAC-pro for processing, analyzing and visualization of scCAS data. scATAC-pro provides flexible choice of methods for different data processing and analytical tasks, with carefully curated default parameters. scATAC-pro also generates detailed data quality and analysis reports in html format and provides interface to visualization software and additional utility functions for various types of downstream analyses.

[1]  Clifford A. Meyer,et al.  Model-based Analysis of ChIP-Seq (MACS) , 2008, Genome Biology.

[2]  J. Ibrahim,et al.  ZINBA integrates local covariates with DNA-seq data to identify broad and narrow regions of enrichment, even within amplified genomic regions , 2011, Genome Biology.

[3]  Marcel H. Schulz,et al.  Identification of transcription factor binding sites using ATAC-seq , 2018, Genome Biology.

[4]  Martin J. Aryee,et al.  Droplet-based combinatorial indexing for massive-scale single-cell chromatin accessibility , 2019, Nature Biotechnology.

[5]  Fidel Ramírez,et al.  deepTools2: a next generation web server for deep-sequencing data analysis , 2016, Nucleic Acids Res..

[6]  P. Kharchenko,et al.  Integrative single-cell analysis of transcriptional and epigenetic states in the human adult brain , 2017, Nature Biotechnology.

[7]  Ido Goldstein,et al.  Bivariate Genomic Footprinting Detects Changes in Transcription Factor Activity. , 2017, Cell reports.

[8]  Howard Y. Chang,et al.  Lineage-specific and single cell chromatin accessibility charts human hematopoiesis and leukemia evolution , 2016, Nature Genetics.

[9]  Howard Y. Chang,et al.  Transcript-indexed ATAC-seq for precision immune profiling , 2018, Nature Medicine.

[10]  Christoph Hafemeister,et al.  Comprehensive integration of single cell data , 2018, bioRxiv.

[11]  Shannon Burke,et al.  Bcl11a is essential for lymphoid development and negatively regulates p53 , 2012, The Journal of experimental medicine.

[12]  Stein Aerts,et al.  cisTopic: cis-regulatory topic modeling on single-cell ATAC-seq data , 2019, Nature Methods.

[13]  Andrew C. Adey,et al.  The accessible chromatin landscape of the murine hippocampus at single-cell resolution , 2019, Genome research.

[14]  Gonçalo R. Abecasis,et al.  The Sequence Alignment/Map format and SAMtools , 2009, Bioinform..

[15]  Andrew C. Adey,et al.  Multiplex single-cell profiling of chromatin accessibility by combinatorial cellular indexing , 2015, Science.

[16]  Cole Trapnell,et al.  Ultrafast and memory-efficient alignment of short DNA sequences to the human genome , 2009, Genome Biology.

[17]  C. Hedrick,et al.  2014 Jeffrey M. Hoeg Award Lecture: Transcriptional Control of Monocyte Development. , 2016, Arteriosclerosis, thrombosis, and vascular biology.

[18]  Richard Durbin,et al.  Sequence analysis Fast and accurate short read alignment with Burrows – Wheeler transform , 2009 .

[19]  Ümit V. Çatalyürek,et al.  Benchmarking short sequence mapping tools , 2013, BMC Bioinformatics.

[20]  Alicia N. Schep,et al.  Unsupervised clustering and epigenetic classification of single cells , 2017, Nature Communications.

[21]  Yuchao Jiang,et al.  Destin: toolkit for single-cell analysis of chromatin accessibility , 2018, bioRxiv.

[22]  Steven L Salzberg,et al.  Fast gapped-read alignment with Bowtie 2 , 2012, Nature Methods.

[23]  Leland McInnes,et al.  UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction , 2018, ArXiv.

[24]  T. Tamura,et al.  Transcriptional control of monocyte and macrophage development. , 2017, International immunology.

[25]  William S. DeWitt,et al.  A Single-Cell Atlas of In Vivo Mammalian Chromatin Accessibility , 2018, Cell.

[26]  Jonathan S. Packer,et al.  A lineage-resolved molecular atlas of C. elegans embryogenesis at single-cell resolution , 2019, Science.

[27]  D. Dickel,et al.  Single-nucleus analysis of accessible chromatin in developing mouse forebrain reveals cell-type-specific transcriptional regulation , 2018, Nature Neuroscience.

[28]  Yuchun Guo,et al.  High Resolution Genome Wide Binding Event Finding and Motif Discovery Reveals Transcription Factor Spatial Binding Constraints , 2012, PLoS Comput. Biol..

[29]  Howard Y. Chang,et al.  Single-cell chromatin accessibility reveals principles of regulatory variation , 2015, Nature.

[30]  W. Huber,et al.  Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 , 2014, Genome Biology.

[31]  Evan Z. Macosko,et al.  Single-Cell Multi-omic Integration Compares and Contrasts Features of Brain Cell Identity , 2019, Cell.

[32]  J. Aguillón,et al.  Gene Expression Profiling of Human Monocyte-derived Dendritic Cells – Searching for Molecular Regulators of Tolerogenicity , 2015, Front. Immunol..

[33]  Samantha Riesenfeld,et al.  EmptyDrops: distinguishing cells from empty droplets in droplet-based single-cell RNA sequencing data , 2019, Genome Biology.

[34]  B. Ren,et al.  Fast and Accurate Clustering of Single Cell Epigenomes Reveals Cis-Regulatory Elements in Rare Cell Types , 2019 .

[35]  Peter F. Stadler,et al.  Lacking alignments? The next-generation sequencing mapper segemehl revisited , 2014, Bioinform..

[36]  Katherine S. Pollard,et al.  Features that define the best ChIP-seq peak calling algorithms , 2016, Briefings Bioinform..

[37]  Kai Zhang,et al.  SnapATAC: A Comprehensive Analysis Package for Single Cell ATAC-seq , 2019, bioRxiv.

[38]  William J. Greenleaf,et al.  chromVAR: Inferring transcription factor-associated accessibility from single-cell epigenomic data , 2017, Nature Methods.

[39]  Zhicheng Ji,et al.  Single-cell regulome data analysis by SCRAT , 2017, Bioinform..

[40]  Björn Usadel,et al.  Trimmomatic: a flexible trimmer for Illumina sequence data , 2014, Bioinform..

[41]  Rudolf Grosschedl,et al.  Transcription factor EBF1 is essential for the maintenance of B cell identity and prevention of alternative fates in committed cells , 2013, Nature Immunology.

[42]  Hong Sun,et al.  C/EBPepsilon directs granulocytic-vs-monocytic lineage determination and confers chemotactic function via Hlx. , 2010, Experimental hematology.

[43]  Martin J. Aryee,et al.  Integrated Single-Cell Analysis Maps the Continuous Regulatory Landscape of Human Hematopoietic Differentiation , 2018, Cell.

[44]  Andrew C. Adey,et al.  Cicero Predicts cis-Regulatory DNA Interactions from Single-Cell Chromatin Accessibility Data. , 2018, Molecular cell.