Multi-chromatic analysis polarimetric interferometric synthetic aperture radar (MCA-PolInSAR) for urban classification

ABSTRACT One of the problems of Synthetic Aperture Radar (SAR) polarimetric decomposition, is that oriented urban areas and vegetation signatures are decomposed into the same volume scattering mechanism. Such indetermination makes it difficult to distinguish vegetation from the oblique urban areas with respect to the radar illumination direction within the volume scattering mechanism. This event occurs because oriented targets exhibit similar polarimetric responses. This paper presents an improvement of the PolSAR decomposition scheme which permits the performing of more accurate classification. The method uses the information existing form the interference generated between two Doppler sub-aperture SAR images. This interferometric polarimetric SAR (PolInSAR) multi-chromatic analysis (MCA-PolInSAR) signal processing method permits the efficient separation of oriented buildings from vegetation yielding considerably improved results in which oriented urban areas are recognized, from volume scattering, as double-bounce objects. Results also show a considerable improvement in the robustness of classification and also in terms of definition and precision.

[1]  Walid Tabbara,et al.  An interferometric coherence optimization method in radar polarimetry for high-resolution imagery , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[2]  Motoyuki Sato,et al.  Urban Damage Level Mapping Based on Scattering Mechanism Investigation Using Fully Polarimetric SAR Data for the 3.11 East Japan Earthquake , 2016, IEEE Transactions on Geoscience and Remote Sensing.

[3]  Hiroyoshi Yamada,et al.  Four-Component Scattering Power Decomposition With Rotation of Coherency Matrix , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[4]  Alberto Moreira,et al.  Real-time synthetic aperture radar (SAR) processing with a new subaperture approach , 1992, IEEE Trans. Geosci. Remote. Sens..

[5]  Laurent Ferro-Famil,et al.  Forest Mapping and Classification at L-Band using Pol-InSAR Optimal Coherence Set Statistics , 2006 .

[6]  Jakob J. van Zyl,et al.  Application of Cloude's target decomposition theorem to polarimetric imaging radar data , 1993, Optics & Photonics.

[7]  Thomas L. Ainsworth,et al.  The Effect of Orientation Angle Compensation on Coherency Matrix and Polarimetric Target Decompositions , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[8]  Lei Zhang,et al.  Azimuth Motion Compensation With Improved Subaperture Algorithm for Airborne SAR Imaging , 2017, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing.

[9]  Thomas L. Ainsworth,et al.  Unsupervised classification using polarimetric decomposition and the complex Wishart classifier , 1999, IEEE Trans. Geosci. Remote. Sens..

[10]  M. Neumann,et al.  Recent Advances in the Derivation of POL-inSAR Statistics: Study and Applications , 2008 .

[11]  Jian Yang,et al.  Three-Component Model-Based Decomposition for Polarimetric SAR Data , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[12]  Thomas L. Ainsworth,et al.  The effect of orientation angle compensation on polarimetric target decompositions , 2009, 2009 IEEE International Geoscience and Remote Sensing Symposium.

[13]  Si-Wei Chen,et al.  PolSAR Image Classification Using Polarimetric-Feature-Driven Deep Convolutional Neural Network , 2018, IEEE Geoscience and Remote Sensing Letters.

[14]  Alberto Refice,et al.  Multichromatic Analysis of InSAR Data , 2013, IEEE Transactions on Geoscience and Remote Sensing.

[15]  Thomas L. Ainsworth,et al.  On the estimation of radar polarization orientation shifts induced by terrain slopes , 2002, IEEE Trans. Geosci. Remote. Sens..

[16]  Laurent Ferro-Famil,et al.  Unsupervised terrain classification preserving polarimetric scattering characteristics , 2004, IEEE Transactions on Geoscience and Remote Sensing.

[17]  L. Ferro-Famil,et al.  Unsupervised classification and analysis of natural scenes from polarimetric interferometric SAR data , 2001, IGARSS 2001. Scanning the Present and Resolving the Future. Proceedings. IEEE 2001 International Geoscience and Remote Sensing Symposium (Cat. No.01CH37217).

[18]  Thomas L. Ainsworth,et al.  Polarimetric SAR data compensation for terrain azimuth slope variation , 2000, IEEE Trans. Geosci. Remote. Sens..

[19]  Laurent Ferro-Famil,et al.  Unsupervised classification of multifrequency and fully polarimetric SAR images based on the H/A/Alpha-Wishart classifier , 2001, IEEE Trans. Geosci. Remote. Sens..

[20]  Yoshio Yamaguchi,et al.  General Four-Component Scattering Power Decomposition With Unitary Transformation of Coherency Matrix , 2013, IEEE Transactions on Geoscience and Remote Sensing.

[21]  Konstantinos Papathanassiou,et al.  Single-baseline polarimetric SAR interferometry , 2001, IEEE Trans. Geosci. Remote. Sens..

[22]  Juan M. Lopez-Sanchez,et al.  Applying the Freeman–Durden Decomposition Concept to Polarimetric SAR Interferometry , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[23]  Filippo Biondi Low rank plus sparse decomposition of synthetic aperture radar data for maritime surveillance , 2016, 2016 4th International Workshop on Compressed Sensing Theory and its Applications to Radar, Sonar and Remote Sensing (CoSeRa).

[24]  Hiroyoshi Yamada,et al.  Four-Component Scattering Power Decomposition With Rotation of Coherency Matrix , 2011, IEEE Trans. Geosci. Remote. Sens..

[25]  Hiroyoshi Yamada,et al.  A four-component decomposition of POLSAR images based on the coherency matrix , 2006, IEEE Geoscience and Remote Sensing Letters.

[26]  Fabio Rocca,et al.  Permanent scatterers in SAR interferometry , 2001, IEEE Trans. Geosci. Remote. Sens..

[27]  Stephen L. Durden,et al.  A three-component scattering model for polarimetric SAR data , 1998, IEEE Trans. Geosci. Remote. Sens..

[28]  Jakob J. van Zyl,et al.  Model-Based Decomposition of Polarimetric SAR Covariance Matrices Constrained for Nonnegative Eigenvalues , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[29]  Juan M. Lopez-Sanchez,et al.  Model Limitations and Parameter-Estimation Methods for Agricultural Applications of Polarimetric SAR Interferometry , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[30]  Eric Pottier,et al.  A review of target decomposition theorems in radar polarimetry , 1996, IEEE Trans. Geosci. Remote. Sens..

[31]  Anthony Freeman,et al.  Fitting a Two-Component Scattering Model to Polarimetric SAR Data From Forests , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[32]  Laurent Ferro-Famil,et al.  Estimation of Forest Structure, Ground, and Canopy Layer Characteristics From Multibaseline Polarimetric Interferometric SAR Data , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[33]  S. Cloude Polarization coherence tomography , 2006 .

[34]  Alexander B. Kostinski,et al.  On foundations of radar polarimetry , 1986 .

[35]  Laurent Ferro-Famil,et al.  Multibaseline Polarimetric SAR Interferometry Coherence Optimization , 2008, IEEE Geoscience and Remote Sensing Letters.

[36]  Yongzhen Li,et al.  PolSAR Land Cover Classification Based on Roll-Invariant and Selected Hidden Polarimetric Features in the Rotation Domain , 2017, Remote. Sens..

[37]  Jakob J. Vanzyl,et al.  Application of Cloude's target decomposition theorem to polarimetric imaging radar data , 1993 .

[38]  Eric Pottier,et al.  An entropy based classification scheme for land applications of polarimetric SAR , 1997, IEEE Trans. Geosci. Remote. Sens..

[39]  Konstantinos P. Papathanassiou,et al.  Polarimetric SAR interferometry , 1998, IEEE Trans. Geosci. Remote. Sens..

[40]  Shane Cloude Dual-Baseline Coherence Tomography , 2007, IEEE Geoscience and Remote Sensing Letters.

[41]  Laurent Ferro-Famil,et al.  Forest Mapping and Classification Using L-Band POLINSAR Data. , 2005 .

[42]  Eric Pottier,et al.  Quantitative comparison of classification capability: fully polarimetric versus dual and single-polarization SAR , 2001, IEEE Trans. Geosci. Remote. Sens..

[43]  Masanobu Shimada,et al.  Deorientation Effect Investigation for Model-Based Decomposition Over Oriented Built-Up Areas , 2013, IEEE Geoscience and Remote Sensing Letters.

[44]  Ridha Touzi,et al.  Target Scattering Decomposition in Terms of Roll-Invariant Target Parameters , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[45]  Helko Breit,et al.  Absolute Height Estimation Using a Single TerraSAR-X Staring Spotlight Acquisition , 2015, IEEE Geoscience and Remote Sensing Letters.

[46]  Hiroyoshi Yamada,et al.  Four-component scattering model for polarimetric SAR image decomposition , 2005, IEEE Transactions on Geoscience and Remote Sensing.

[47]  佐藤 晃一,et al.  Polarimetric SAR Interferometryによる森林の特徴について , 2000 .

[48]  Søren Nørvang Madsen,et al.  Automated Absolute Phase Retrieval in Across-Track Interferometry , 1992, [Proceedings] IGARSS '92 International Geoscience and Remote Sensing Symposium.

[49]  Motoyuki Sato,et al.  General Polarimetric Model-Based Decomposition for Coherency Matrix , 2014, IEEE Trans. Geosci. Remote. Sens..