Relative Chemical Stability of Imidazolium-Based Alkaline Anion Exchange Polymerized Ionic Liquids

We thoroughly investigate and quantify the chemical stability of an imidazolium-based alkaline anion exchange polymerized ionic liquid (PIL), poly(1-[(2-methacryloyloxy)ethyl]-3-butylimidazolium hydroxide) (poly(MEBIm-OH), over a broad range of humidities, temperatures, and alkaline concentrations using the combined techniques of electrochemical impedance spectroscopy and nuclear magnetic resonance spectroscopy. High chemical stability was observed under dry conditions (10% RH) at 30 °C, humid and saturated conditions up to 80 °C, and even in mild alkaline conditions ([KOH] 1 M). Under these conditions, we suggest an imidazolium ring-opening mechanism as the primary degradation pathway, based on a detailed analysis of the 1H NMR spectra. Similar to poly(MEBIm-OH), other alkaline anion (carbonate (CO32–) and bicarbonate (HCO3–)) exchange PILs were als...

[1]  J. C. Bevington,et al.  A tracer study of the hydrolysis of methyl methacrylate and methyl acrylate units in homopolymers and copolymers , 1968 .

[2]  K. Oyaizu,et al.  Polysulfonium as a new electrode-modifying polyelectrolyte , 2001 .

[3]  R. Slade,et al.  Poly(ethylene-co-tetrafluoroethylene)-Derived Radiation-Grafted Anion-Exchange Membrane with Properties Specifically Tailored for Application in Metal-Cation-Free Alkaline Polymer Electrolyte Fuel Cells , 2007 .

[4]  J. M. Smith,et al.  Kinetics of sodium bicarbonate decomposition , 1986 .

[5]  R. Slade,et al.  Prospects for Alkaline Anion‐Exchange Membranes in Low Temperature Fuel Cells , 2005 .

[6]  R. Slade,et al.  Alkaline anion-exchange radiation-grafted membranes for possible electrochemical application in fuel cells , 2003 .

[7]  B. Pivovar,et al.  Decomposition pathways of an alkaline fuel cell membrane material component via evolved gas analysis , 2008 .

[8]  Lin Zhuang,et al.  Alkaline polymer electrolyte fuel cells completely free from noble metal catalysts , 2008, Proceedings of the National Academy of Sciences.

[9]  C. Peters,et al.  Quantum chemical aided prediction of the thermal decomposition mechanisms and temperatures of ionic liquids , 2007 .

[10]  Y. Elabd,et al.  Anion exchanged polymerized ionic liquids: High free volume single ion conductors , 2011 .

[11]  M. Mahanthappa,et al.  Thermal and ion transport properties of hydrophilic and hydrophobic polymerized styrenic imidazolium ionic liquids , 2011 .

[12]  Paul F. Mutolo,et al.  Solvent Processable Tetraalkylammonium-Functionalized Polyethylene for Use as an Alkaline Anion Exchange Membrane , 2010 .

[13]  Paul F. Mutolo,et al.  Tunable high performance cross-linked alkaline anion exchange membranes for fuel cell applications. , 2010, Journal of the American Chemical Society.

[14]  Wei Li,et al.  Synthesis and characterization of novel anion exchange membranes based on imidazolium-type ionic liquid for alkaline fuel cells , 2010 .

[15]  Junhua Wang,et al.  Novel Hydroxide-Conducting Polyelectrolyte Composed of an Poly(arylene ether sulfone) Containing Pendant Quaternary Guanidinium Groups for Alkaline Fuel Cell Applications , 2010 .

[16]  Jian‐mei Lu,et al.  Cross-Linked Alkaline Ionic Liquid-Based Polymer Electrolytes for Alkaline Fuel Cell Applications , 2010 .

[17]  B. Améduri,et al.  Polymeric materials as anion-exchange membranes for alkaline fuel cells , 2011 .

[18]  Chunsheng Wang,et al.  Quaternized poly(methyl methacrylate-co-butyl acrylate-co-vinylbenzyl chloride) membrane for alkaline fuel cells , 2010 .

[19]  Richard L. Harlow,et al.  A stable crystalline carbene , 1991 .

[20]  Zhongwei Chen,et al.  A soluble and highly conductive ionomer for high-performance hydroxide exchange membrane fuel cells. , 2009, Angewandte Chemie.

[21]  S. Roualdès,et al.  Preparation of solid alkaline fuel cell binders based on fluorinated poly(diallyldimethylammonium chloride)s [poly(DADMAC)] or poly(chlorotrifluoroethylene‐co‐DADMAC) copolymers , 2009 .

[22]  D. Sangeetha,et al.  A novel anion exchange membrane from polystyrene (ethylene butylene) polystyrene: Synthesis and characterization , 2010 .

[23]  H. Ohno,et al.  Effect of tetrabutylphosphonium cation on the physico-chemical properties of amino-acid ionic liquids. , 2006, Chemical communications.

[24]  L. Pratt,et al.  Mechanism of Tetraalkylammonium Headgroup Degradation in Alkaline Fuel Cell Membranes , 2008 .

[25]  Michael A. Hickner,et al.  Anion Exchange Membranes by Bromination of Benzylmethyl-Containing Poly(sulfone)s , 2010 .

[26]  Oldamur Hollóczki,et al.  Hydrolysis of imidazole-2-ylidenes. , 2011, Journal of the American Chemical Society.

[27]  S. Hecht,et al.  Chemical transformations of 7,9-disubstituted purines and related heterocycles. Selective reduction of imines and immonium salts. , 1976, The Journal of organic chemistry.

[28]  R. Slade,et al.  Comparison of PVDF- and FEP-based radiation-grafted alkaline anion-exchange membranes for use in low temperature portable DMFCs , 2002 .

[29]  A. Zhu,et al.  Anion exchange membranes based on quaternized polystyrene-block-poly(ethylene-ran-butylene)-block-polystyrene for direct methanol alkaline fuel cells , 2010 .

[30]  J. Varcoe Investigations of the ex situ ionic conductivities at 30 degrees C of metal-cation-free quaternary ammonium alkaline anion-exchange membranes in static atmospheres of different relative humidities. , 2007, Physical chemistry chemical physics : PCCP.

[31]  Timothy J. Peckham,et al.  Anion conducting poly(dialkyl benzimidazolium) salts , 2011 .

[32]  R. Slade,et al.  An alkaline polymer electrochemical interface: a breakthrough in application of alkaline anion-exchange membranes in fuel cells. , 2006, Chemical communications.

[33]  P. D. Lawley,et al.  Acidic Dissociation of 7 : 9-Dialkylguanines and its Possible Relation to Mutagenic Properties of Alkylating Agents , 1961, Nature.

[34]  A. Lough,et al.  Synthesis and reactivity of subvalent compounds: Part 11. Oxidation, hydrogenation and hydrolysis of stable diamino carbenes , 2001 .

[35]  Plamen Atanassov,et al.  Novel KOH-free anion-exchange membrane fuel cell: Performance comparison of alternative anion-exchange ionomers in catalyst ink , 2010 .

[36]  A. N. Evdokimov,et al.  Solubility of Potassium Carbonate and Potassium Hydrocarbonate in Methanol , 2002 .

[37]  H. Morawetz,et al.  Intramolecular Carboxylate Attack on Ester Groups. II. The Effect of Diastereoisomerism in Polymers and their Low Molecular Weight Models1 , 1961 .

[38]  Y. Elabd,et al.  Block Copolymers for Fuel Cells , 2011 .

[39]  Keith Scott,et al.  Development of direct methanol alkaline fuel cells using anion exchange membranes , 2004 .

[40]  J. Richard,et al.  Formation and stability of N-heterocyclic carbenes in water: the carbon acid pKa of imidazolium cations in aqueous solution. , 2004, Journal of the American Chemical Society.

[41]  B. Ranu,et al.  Ionic liquid as catalyst and reaction medium. The dramatic influence of a task-specific ionic liquid, [bmIm]OH, in Michael addition of active methylene compounds to conjugated ketones, carboxylic esters, and nitriles. , 2005, Organic letters.

[42]  H. Yanagi,et al.  Anion Exchange Membrane and Ionomer for Alkaline Membrane Fuel Cells (AMFCs) , 2008 .

[43]  C. Makaroff,et al.  Alkaline opening of imidazole ring of 7-methylguanosine. 2. Further studies on reaction mechanisms and products. , 1982, Chemico-biological interactions.

[44]  R. K. Robins,et al.  Ring Cleavage of Purine Nucleosides to Yield Possible Biogenetic Precursors of Pteridines and Riboflavin , 1963 .

[45]  J. Chien,et al.  Resist Rolymers. 8. Thermolysis of Bromine Containing Acrylate Polymers. , 1987 .

[46]  B. Améduri,et al.  Grafting polymerization of styrene onto alternating terpolymers based on chlorotrifluoroethylene, hexafluoropropylene, and vinyl ethers, and their modification into ionomers bearing ammonium side‐groups , 2010 .