Computation of periodic solutions in maximal monotone dynamical systems with guaranteed consistency

In this paper, we study a class of set-valued dynamical systems that satisfy maximal monotonicity properties. This class includes linear relay systems, linear complementarity systems, and linear mechanical systems with dry friction under some conditions. We discuss two numerical schemes based on time-stepping methods for the computation of the periodic solutions when these systems are periodically excited. We provide formal mathematical justifications for the numerical schemes in the sense of consistency, which means that the continuous-time interpolations of the numerical solutions converge to the continuous-time periodic solution when the discretization step vanishes. The two time-stepping methods are applied for the computation of the periodic solution exhibited by a power electronic converter and the corresponding methods are compared in terms of approximation accuracy and computation time.

[1]  Jong-Shi Pang,et al.  Semicopositive linear complementarity systems , 2007 .

[2]  Karl Henrik Johansson,et al.  Fast switches in relay feedback systems , 1999, Autom..

[3]  A. Nagurney,et al.  Projected Dynamical Systems and Variational Inequalities with Applications , 1995 .

[4]  M. Kanat Camlibel,et al.  Convergence of Time-Stepping Schemes for Passive and Extended Linear Complementarity Systems , 2009, SIAM J. Numer. Anal..

[5]  J. Aubin,et al.  Existence of Solutions to Differential Inclusions , 1984 .

[6]  G. Minty Monotone (nonlinear) operators in Hilbert space , 1962 .

[7]  W. P. M. H. Heemels,et al.  Observer Design for Lur'e Systems With Multivalued Mappings: A Passivity Approach , 2009, IEEE Transactions on Automatic Control.

[8]  M. Marques Differential Inclusions in Nonsmooth Mechanical Problems , 1993 .

[9]  N. Wouw,et al.  Uniform Output Regulation of Nonlinear Systems: A Convergent Dynamics Approach , 2005 .

[10]  R. Tyrrell Rockafellar,et al.  Variational Analysis , 1998, Grundlehren der mathematischen Wissenschaften.

[11]  Nathan van de Wouw,et al.  Uniform Convergence of Monotone Measure Differential Inclusions: with Application to the Control of Mechanical Systems with Unilateral Constraints , 2008, Int. J. Bifurc. Chaos.

[12]  A. J. van der Schaft,et al.  Complementarity modeling of hybrid systems , 1998, IEEE Trans. Autom. Control..

[13]  Vincent Acary,et al.  On the equivalence between complementarity systems, projected systems and differential inclusions , 2006, Syst. Control. Lett..

[14]  C. Lemaréchal,et al.  On the Equivalence Between Complementarity Systems, Projected Systems and Unilateral Differential Inclusions , 2004 .

[15]  P. Bénilan,et al.  Equations d'évolution dans un espace de Banach quelconque et applications , 1972 .

[16]  Gian-Carlo Rota Opérateurs maximaux monotones: H. Brézis, North-Holland, 1983, 183 pp. , 1985 .

[17]  Bernard Brogliato,et al.  Absolute stability and the Lagrange-Dirichlet theorem with monotone multivalued mappings , 2001, Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228).

[18]  B. Brogliato Nonsmooth Impact Mechanics: Models, Dynamics and Control , 1996 .

[19]  B. M. Fulk MATH , 1992 .

[20]  Luigi Iannelli,et al.  A Complementarity Model for Closed-Loop Power Converters , 2014, IEEE Transactions on Power Electronics.

[21]  W. P. M. H. Heemels,et al.  On solution concepts and well-posedness of linear relay systems , 2003, Autom..

[22]  S. Dirkse,et al.  The path solver: a nommonotone stabilization scheme for mixed complementarity problems , 1995 .

[23]  Vincent Acary,et al.  A complementarity approach for the computation of periodic oscillations in piecewise linear systems , 2016, Nonlinear Dynamics.

[24]  B. Brogliato,et al.  Numerical Methods for Nonsmooth Dynamical Systems: Applications in Mechanics and Electronics , 2008 .

[25]  Christian Studer,et al.  Numerics of Unilateral Contacts and Friction , 2009 .

[26]  M. Çamlibel,et al.  A New Perspective for Modeling Power Electronics Converters: Complementarity Framework , 2009, IEEE Transactions on Power Electronics.

[27]  W. P. M. H. Heemels,et al.  Projected dynamical systems in a complementarity formalism , 1999, Oper. Res. Lett..

[28]  Luigi Iannelli,et al.  Computation of Steady-State Oscillations in Power Converters Through Complementarity , 2011, IEEE Transactions on Circuits and Systems I: Regular Papers.

[29]  W. P. M. H. Heemels,et al.  Linear Complementarity Systems , 2000, SIAM J. Appl. Math..

[30]  M. Kanat Camlibel,et al.  Time-stepping methods for constructing periodic solutions in maximally monotone set-valued dynamical systems , 2014, 53rd IEEE Conference on Decision and Control.

[31]  S. Sorin,et al.  Evolution equations for maximal monotone operators: asymptotic analysis in continuous and discrete time , 2009, 0905.1270.

[32]  Asen L. Dontchev,et al.  Difference Methods for Differential Inclusions: A Survey , 1992, SIAM Rev..

[33]  H. Brezis Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert , 1973 .

[34]  A. Schaft,et al.  Switched networks and complementarity , 2003 .

[35]  Luigi Iannelli,et al.  Dynamics and control of switched electronic systems , 2012 .

[36]  Nathan van de Wouw,et al.  On the convergence of linear passive complementarity systems , 2007, 2007 46th IEEE Conference on Decision and Control.

[37]  Richard W. Cottle,et al.  Linear Complementarity Problem. , 1992 .

[38]  W. Heemels,et al.  Consistency of a time-stepping method for a class of piecewise-linear networks , 2002 .

[39]  M. Kanat Camlibel,et al.  Linear passive systems and maximal monotone mappings , 2016, Math. Program..

[40]  M. R. Liberzon Essays on the absolute stability theory , 2006 .

[41]  David Angeli,et al.  A Lyapunov approach to incremental stability properties , 2002, IEEE Trans. Autom. Control..