Structural analysis of prolines and hydroxyprolines binding to the l-glutamate-γ-semialdehyde dehydrogenase active site of bifunctional proline utilization A.

[1]  J. Tanner,et al.  Covalent Modification of the Flavin in Proline Dehydrogenase by Thiazolidine-2-Carboxylate. , 2020, ACS chemical biology.

[2]  R. Muñoz-Clares,et al.  The importance of assessing aldehyde substrate inhibition for the correct determination of kinetic parameters and mechanisms: the case of the ALDH enzymes. , 2019, Chemico-biological interactions.

[3]  R. Huddleston Structure , 2018, Jane Austen's Style.

[4]  J. Tanner,et al.  Structural Basis for the Substrate Inhibition of Proline Utilization A by Proline , 2017, Molecules.

[5]  Naohiro Kobayashi,et al.  Validation of Structures in the Protein Data Bank , 2017, Structure.

[6]  J. Tanner Structural Biology of Proline Catabolic Enzymes. , 2017, Antioxidants & redox signaling.

[7]  J. Tanner,et al.  Structure, function, and mechanism of proline utilization A (PutA). , 2017, Archives of biochemistry and biophysics.

[8]  J. Tanner,et al.  Biophysical investigation of type A PutAs reveals a conserved core oligomeric structure , 2017, The FEBS journal.

[9]  J. Tanner,et al.  Structure and characterization of a class 3B proline utilization A: Ligand-induced dimerization and importance of the C-terminal domain for catalysis , 2017, The Journal of Biological Chemistry.

[10]  R. Liddington,et al.  Diabetes reversal by inhibition of the low molecular weight tyrosine phosphatase , 2017, Nature chemical biology.

[11]  Paul D. Adams,et al.  Polder maps: improving OMIT maps by excluding bulk solvent , 2017, Acta crystallographica. Section D, Structural biology.

[12]  J. Tanner,et al.  Structures of Proline Utilization A (PutA) Reveal the Fold and Functions of the Aldehyde Dehydrogenase Superfamily Domain of Unknown Function* , 2016, The Journal of Biological Chemistry.

[13]  J. Tanner,et al.  Structural Basis of Substrate Recognition by Aldehyde Dehydrogenase 7A1 , 2015, Biochemistry.

[14]  M. Cubellis,et al.  Looking for protein stabilizing drugs with thermal shift assay , 2015, Drug testing and analysis.

[15]  J. Tanner,et al.  Evidence That the C-Terminal Domain of a Type B PutA Protein Contributes to Aldehyde Dehydrogenase Activity and Substrate Channeling , 2014, Biochemistry.

[16]  J. Tanner,et al.  Kinetic and Structural Characterization of Tunnel-Perturbing Mutants in Bradyrhizobium japonicum Proline Utilization A , 2014, Biochemistry.

[17]  J. Tanner,et al.  Structures of the PutA peripheral membrane flavoenzyme reveal a dynamic substrate-channeling tunnel and the quinone-binding site , 2014, Proceedings of the National Academy of Sciences.

[18]  J. Tanner,et al.  Evidence for Hysteretic Substrate Channeling in the Proline Dehydrogenase and Δ1-Pyrroline-5-carboxylate Dehydrogenase Coupled Reaction of Proline Utilization A (PutA)* , 2013, The Journal of Biological Chemistry.

[19]  J. Tanner,et al.  Structural basis of substrate selectivity of Δ(1)-pyrroline-5-carboxylate dehydrogenase (ALDH4A1): semialdehyde chain length. , 2013, Archives of biochemistry and biophysics.

[20]  Philip R. Evans,et al.  How good are my data and what is the resolution? , 2013, Acta crystallographica. Section D, Biological crystallography.

[21]  R. Muñoz-Clares,et al.  Structural determinants of substrate specificity in aldehyde dehydrogenases. , 2013, Chemico-biological interactions.

[22]  Brandon J. Bravo,et al.  Mechanistic and Structural Understanding of Uncompetitive Inhibitors of Caspase-6 , 2012, PloS one.

[23]  J. Tanner,et al.  The three-dimensional structural basis of type II hyperprolinemia. , 2012, Journal of molecular biology.

[24]  P. Zwart,et al.  Towards automated crystallographic structure refinement with phenix.refine , 2012, Acta crystallographica. Section D, Biological crystallography.

[25]  G. Rosenthal,et al.  Mechanism of inhibition for N6022, a first-in-class drug targeting S-nitrosoglutathione reductase. , 2012, Biochemistry.

[26]  P. Emsley,et al.  Features and development of Coot , 2010, Acta crystallographica. Section D, Biological crystallography.

[27]  Greg L. Hura,et al.  Crystal structure of the bifunctional proline utilization A flavoenzyme from Bradyrhizobium japonicum , 2010, Proceedings of the National Academy of Sciences.

[28]  Vincent B. Chen,et al.  Correspondence e-mail: , 2000 .

[29]  Paul D Adams,et al.  Electronic Reprint Biological Crystallography Electronic Ligand Builder and Optimization Workbench (elbow ): a Tool for Ligand Coordinate and Restraint Generation Biological Crystallography Electronic Ligand Builder and Optimization Workbench (elbow): a Tool for Ligand Coordinate and Restraint Gener , 2022 .

[30]  J. Tanner Structural biology of proline catabolism , 2008, Amino Acids.

[31]  S. Yokoyama,et al.  Crystal structure of Thermus thermophilus Delta1-pyrroline-5-carboxylate dehydrogenase. , 2006, Journal of molecular biology.

[32]  J. Millán,et al.  Structural studies of human placental alkaline phosphatase in complex with functional ligands. , 2005, Journal of molecular biology.

[33]  T. Hurley,et al.  Coenzyme isomerization is integral to catalysis in aldehyde dehydrogenase. , 2003, Biochemistry.

[34]  R. Pietruszko,et al.  Human glutamic-gamma-semialdehyde dehydrogenase. Kinetic mechanism. , 1989, The Biochemical journal.

[35]  L. Frank,et al.  Improved chemical synthesis and enzymatic assay ofΔ1-pyrroline-5-car☐ylic acid , 1975 .

[36]  L. Frank,et al.  Improved chemical synthesis and enzymatic assay of delta-1-pyrroline-5-carboxylic acid. , 1975, Analytical biochemistry.