Gas separation membranes for zero-emission fossil power plants: MEM-BRAIN

The objective of the “MEM-BRAIN” project is the development and integration of ceramic and polymeric gas separation membranes for zero-emission fossil power plants. This will be achieved using membranes with a high permeability and selectivity for either CO2, O2 or H2, for the three CO2 capture process routes in power plants, thus enabling CO2 to be captured with high-purity in a readily condensable form. For the pre-combustion process, we have developed ceramic microporous membranes that operate at intermediate temperatures (≤400 °C) for H2/CO2 separation. For the oxyfuel process, we have developed dense ceramic mixed oxygen ionic-electronic conducting membranes that operate at 800–1000 °C for O2/N2 separation. The perovskite-type oxide Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCF5582) was taken as the reference material for this application. For the post-combustion process, polymeric and organic/inorganic hybrid membranes have been developed for CO2/N2 separation at temperatures up to 200 °C. In addition to the development of membranes, we consider the integration of the membranes into power plants by modelling and optimization. Finally, specific technical, economic and environmental properties of CO2 capture as a component in a CCS process chain are assessed, analysing the energy supply system as a whole.

[1]  J. Caro,et al.  Preparation and characterization of sodium-free nanocrystalline sodalite , 2008 .

[2]  J. E. ten Elshof,et al.  Synthesis and Characterization of Microporous Titania Membranes , 2004 .

[3]  B. Freeman,et al.  Plasticization-Enhanced Hydrogen Purification Using Polymeric Membranes , 2006, Science.

[4]  Chris Hendriks,et al.  Carbon Dioxide Removal from Coal-Fired Power Plants , 1994 .

[5]  Olav Bolland,et al.  High-temperature membranes in power generation with CO2 capture , 2004 .

[6]  Hans-Jürgen Dr. Klüppel,et al.  The Revision of ISO Standards 14040-3 - ISO 14040: Environmental management – Life cycle assessment – Principles and framework - ISO 14044: Environmental management – Life cycle assessment – Requirements and guidelines , 2005 .

[7]  Michael Modigell,et al.  MEM-BRAIN gas separation membranes for zero-emission fossil power plants , 2009 .

[8]  H. Kita,et al.  Tubular-type pervaporation module with zeolite NaA membrane☆ , 1997 .

[9]  S. Krishnamoorthy,et al.  Nanoscale patterning with block copolymers , 2006 .

[10]  A. Burggraaf,et al.  High permselectivities of microporous silica-modifiedγ-alumina membranes , 1989 .

[11]  D. Martinsen,et al.  CCS: A future CO2 mitigation option for Germany?—A bottom-up approach , 2007 .

[12]  Stefano Consonni,et al.  Shift reactors and physical absorption for Low-CO2 emission IGCCs , 1999 .

[13]  John Davison,et al.  Performance and costs of power plants with capture and storage of CO2 , 2007 .

[14]  J. M. Serra,et al.  Preparation and Characterization of Nanocrystalline Mixed Proton−Electronic Conducting Materials Based on the System Ln6WO12 , 2009 .

[15]  Renzo Castillo,et al.  Technical evaluation of CO2 compression and purification in CCS power plants , 2009 .

[16]  A. Feldhoff,et al.  Influence of CO2 on the oxygen permeation performance and the microstructure of perovskite-type (Ba0.5Sr0.5)(Co0.8Fe0.2)O3−δ membranes , 2007 .

[17]  R. Cai,et al.  Novel and Ideal Zirconium-Based Dense Membrane Reactors for Partial Oxidation of Methane to Syngas , 2002 .

[18]  Joris Koornneef,et al.  Life cycle assessment of a pulverized coal power plant with post-combustion capture, transport and storage of CO2 , 2008 .

[19]  Enrico Drioli,et al.  Membrane technologies for CO2 separation , 2010 .

[20]  Chunshan Song,et al.  Microwave-assisted hydrothermal synthesis of hydroxy-sodalite zeolite membrane , 2004 .

[21]  M. Thring World Energy Outlook , 1977 .

[22]  Lesile Glasser The chemistry of silica: By Ralph K. Iller. Pp. vii+ 866. Wiley, Chichester. 1979, £39.50 , 1980 .

[23]  J. Franz,et al.  An evaluation of CO2 and H2 selective polymeric membranes for CO2 separation in IGCC processes , 2010 .

[24]  Klaus-Viktor Peinemann,et al.  CO2-Philic Polymer Membrane with Extremely High Separation Performance , 2010 .

[25]  K. Wiik,et al.  Structural instability of cubic perovskite BaxSr1 − xCo1 − yFeyO3 − δ , 2008 .

[26]  R. Weber,et al.  Microporous TiO2 membranes with a cut off <500 Da , 2000 .

[27]  Tim Cockerill,et al.  Life cycle GHG assessment of fossil fuel power plants with carbon capture and storage , 2008 .

[28]  Klaus-Viktor Peinemann,et al.  Nanostructured membrane material designed for carbon dioxide separation , 2010 .

[29]  F. Kapteijn,et al.  Synthesis of thin defect-free hydroxy sodalite membranes: New candidate for activated water permeation , 2007 .

[30]  A. Car,et al.  Tailor‐made Polymeric Membranes based on Segmented Block Copolymers for CO2 Separation , 2008 .

[31]  H. Verweij,et al.  High-selectivity, high-flux silica membranes for gas separation , 1998, Science.

[32]  Wilfredo Yave,et al.  PEG modified poly(amide-b-ethylene oxide) membranes for CO2 separation , 2008 .

[33]  Eric Favre,et al.  Carbon dioxide recovery from post-combustion processes: Can gas permeation membranes compete with absorption? , 2007 .

[34]  Ludger Blum,et al.  A parametric study of CO2/N2 gas separation membrane processes for post-combustion capture , 2008 .

[35]  Klaus-Viktor Peinemann,et al.  Pebax®/polyethylene glycol blend thin film composite membranes for CO2 separation: Performance with mixed gases , 2008 .

[36]  Aie World Energy Outlook 2009 , 2000 .

[37]  M. Mølnvik,et al.  Dynamis CO2 quality recommendations , 2008 .

[38]  Wilhelm Kuckshinrichs,et al.  Environmental assessment of German electricity generation from coal-fired power plants with amine-based carbon capture , 2009 .

[39]  H. Krieg,et al.  Direct crystallisation of a hydroxy sodalite membrane without seeding using a conventional oven , 2007 .

[40]  Hans Hasse,et al.  Integration of a chemical process model in a power plant modelling tool for the simulation of an amine based CO2 scrubber , 2009 .

[41]  R. Haugsrud Defects and transport properties in Ln6WO12 (Ln = La, Nd, Gd, Er) , 2007 .

[42]  Neil Hewitt,et al.  Comparative assessment of coal fired IGCC systems with CO2 capture using physical absorption, membrane reactors and chemical looping , 2009 .

[43]  Haiqing Lin,et al.  Power plant post-combustion carbon dioxide capture: An opportunity for membranes , 2010 .

[44]  J. Rost,et al.  Integrated cleaning of coloured waste water by ceramic NF membranes , 2001 .

[45]  H. Iwahara,et al.  Protonic conduction in lanthanum strontium aluminate and lanthanum niobate-based oxides at elevated temperatures , 2002 .

[46]  Jordi Rius,et al.  Supramolecular self-assembled molecules as organic directing agent for synthesis of zeolites , 2004, Nature.

[47]  Roda Bounaceur,et al.  Membrane processes for post-combustion carbon dioxide capture: A parametric study , 2006 .

[48]  F. Faupel,et al.  Gas permeability and free volume in poly(amide-b-ethylene oxide)/ polyethylene glycol blend membranes , 2009 .

[49]  Li Zhao,et al.  Multi-stage gas separation membrane processes used in post-combustion capture: Energetic and economic analyses , 2010 .

[50]  May-Britt Hägg,et al.  A feasibility study of CO2 capture from flue gas by a facilitated transport membrane , 2010 .

[51]  H. Iwahara,et al.  Proton conduction in non-perovskite-type oxides at elevated temperatures , 2001 .