Gas separation membranes for zero-emission fossil power plants: MEM-BRAIN
暂无分享,去创建一个
Michael Modigell | Petra Zapp | Lorenz Singheiser | Wilhelm A. Meulenberg | M. Czyperek | Henricus J.M. Bouwmeester | I. Voigt | D. Stöver | M. Modigell | L. Singheiser | K. Ebert | P. Zapp | H. Bouwmeester | W. Meulenberg | D. Stöver | K. Ebert | I. Voigt | M. Czyperek
[1] J. Caro,et al. Preparation and characterization of sodium-free nanocrystalline sodalite , 2008 .
[2] J. E. ten Elshof,et al. Synthesis and Characterization of Microporous Titania Membranes , 2004 .
[3] B. Freeman,et al. Plasticization-Enhanced Hydrogen Purification Using Polymeric Membranes , 2006, Science.
[4] Chris Hendriks,et al. Carbon Dioxide Removal from Coal-Fired Power Plants , 1994 .
[5] Olav Bolland,et al. High-temperature membranes in power generation with CO2 capture , 2004 .
[6] Hans-Jürgen Dr. Klüppel,et al. The Revision of ISO Standards 14040-3 - ISO 14040: Environmental management Life cycle assessment Principles and framework - ISO 14044: Environmental management Life cycle assessment Requirements and guidelines , 2005 .
[7] Michael Modigell,et al. MEM-BRAIN gas separation membranes for zero-emission fossil power plants , 2009 .
[8] H. Kita,et al. Tubular-type pervaporation module with zeolite NaA membrane☆ , 1997 .
[9] S. Krishnamoorthy,et al. Nanoscale patterning with block copolymers , 2006 .
[10] A. Burggraaf,et al. High permselectivities of microporous silica-modifiedγ-alumina membranes , 1989 .
[11] D. Martinsen,et al. CCS: A future CO2 mitigation option for Germany?—A bottom-up approach , 2007 .
[12] Stefano Consonni,et al. Shift reactors and physical absorption for Low-CO2 emission IGCCs , 1999 .
[13] John Davison,et al. Performance and costs of power plants with capture and storage of CO2 , 2007 .
[14] J. M. Serra,et al. Preparation and Characterization of Nanocrystalline Mixed Proton−Electronic Conducting Materials Based on the System Ln6WO12 , 2009 .
[15] Renzo Castillo,et al. Technical evaluation of CO2 compression and purification in CCS power plants , 2009 .
[16] A. Feldhoff,et al. Influence of CO2 on the oxygen permeation performance and the microstructure of perovskite-type (Ba0.5Sr0.5)(Co0.8Fe0.2)O3−δ membranes , 2007 .
[17] R. Cai,et al. Novel and Ideal Zirconium-Based Dense Membrane Reactors for Partial Oxidation of Methane to Syngas , 2002 .
[18] Joris Koornneef,et al. Life cycle assessment of a pulverized coal power plant with post-combustion capture, transport and storage of CO2 , 2008 .
[19] Enrico Drioli,et al. Membrane technologies for CO2 separation , 2010 .
[20] Chunshan Song,et al. Microwave-assisted hydrothermal synthesis of hydroxy-sodalite zeolite membrane , 2004 .
[21] M. Thring. World Energy Outlook , 1977 .
[22] Lesile Glasser. The chemistry of silica: By Ralph K. Iller. Pp. vii+ 866. Wiley, Chichester. 1979, £39.50 , 1980 .
[23] J. Franz,et al. An evaluation of CO2 and H2 selective polymeric membranes for CO2 separation in IGCC processes , 2010 .
[24] Klaus-Viktor Peinemann,et al. CO2-Philic Polymer Membrane with Extremely High Separation Performance , 2010 .
[25] K. Wiik,et al. Structural instability of cubic perovskite BaxSr1 − xCo1 − yFeyO3 − δ , 2008 .
[26] R. Weber,et al. Microporous TiO2 membranes with a cut off <500 Da , 2000 .
[27] Tim Cockerill,et al. Life cycle GHG assessment of fossil fuel power plants with carbon capture and storage , 2008 .
[28] Klaus-Viktor Peinemann,et al. Nanostructured membrane material designed for carbon dioxide separation , 2010 .
[29] F. Kapteijn,et al. Synthesis of thin defect-free hydroxy sodalite membranes: New candidate for activated water permeation , 2007 .
[30] A. Car,et al. Tailor‐made Polymeric Membranes based on Segmented Block Copolymers for CO2 Separation , 2008 .
[31] H. Verweij,et al. High-selectivity, high-flux silica membranes for gas separation , 1998, Science.
[32] Wilfredo Yave,et al. PEG modified poly(amide-b-ethylene oxide) membranes for CO2 separation , 2008 .
[33] Eric Favre,et al. Carbon dioxide recovery from post-combustion processes: Can gas permeation membranes compete with absorption? , 2007 .
[34] Ludger Blum,et al. A parametric study of CO2/N2 gas separation membrane processes for post-combustion capture , 2008 .
[35] Klaus-Viktor Peinemann,et al. Pebax®/polyethylene glycol blend thin film composite membranes for CO2 separation: Performance with mixed gases , 2008 .
[36] Aie. World Energy Outlook 2009 , 2000 .
[37] M. Mølnvik,et al. Dynamis CO2 quality recommendations , 2008 .
[38] Wilhelm Kuckshinrichs,et al. Environmental assessment of German electricity generation from coal-fired power plants with amine-based carbon capture , 2009 .
[39] H. Krieg,et al. Direct crystallisation of a hydroxy sodalite membrane without seeding using a conventional oven , 2007 .
[40] Hans Hasse,et al. Integration of a chemical process model in a power plant modelling tool for the simulation of an amine based CO2 scrubber , 2009 .
[41] R. Haugsrud. Defects and transport properties in Ln6WO12 (Ln = La, Nd, Gd, Er) , 2007 .
[42] Neil Hewitt,et al. Comparative assessment of coal fired IGCC systems with CO2 capture using physical absorption, membrane reactors and chemical looping , 2009 .
[43] Haiqing Lin,et al. Power plant post-combustion carbon dioxide capture: An opportunity for membranes , 2010 .
[44] J. Rost,et al. Integrated cleaning of coloured waste water by ceramic NF membranes , 2001 .
[45] H. Iwahara,et al. Protonic conduction in lanthanum strontium aluminate and lanthanum niobate-based oxides at elevated temperatures , 2002 .
[46] Jordi Rius,et al. Supramolecular self-assembled molecules as organic directing agent for synthesis of zeolites , 2004, Nature.
[47] Roda Bounaceur,et al. Membrane processes for post-combustion carbon dioxide capture: A parametric study , 2006 .
[48] F. Faupel,et al. Gas permeability and free volume in poly(amide-b-ethylene oxide)/ polyethylene glycol blend membranes , 2009 .
[49] Li Zhao,et al. Multi-stage gas separation membrane processes used in post-combustion capture: Energetic and economic analyses , 2010 .
[50] May-Britt Hägg,et al. A feasibility study of CO2 capture from flue gas by a facilitated transport membrane , 2010 .
[51] H. Iwahara,et al. Proton conduction in non-perovskite-type oxides at elevated temperatures , 2001 .