An Unfitted Discontinuous Galerkin method for pore-scale simulations of solute transport

Abstract: For the simulation of transport processes in porous media effective parameters for the physical processes on the target scale are required. Numerical upscaling, as well as multiscale approaches can help where experiments are not possible, or hard to conduct. In 2009, Bastian and Engwer proposed an Unfitted Discontinuous Galerkin (UDG) method for solving PDEs in complex domains, e.g. on the pore scale. We apply this method to a parabolic test problem. Convergence studies show the expected second order convergence. As an application example solute transport in a porous medium at the pore scale is simulated. Macroscopic breakthrough curves are computed using direct simulations. The method allows finite element meshes which are significantly coarser then those required by standard conforming finite element approaches. Thus it is possible to obtain reliable numerical results for macroscopic parameter already for a relatively coarse grid.

[1]  Xiaoxian Zhang,et al.  Persistence of anomalous dispersion in uniform porous media demonstrated by pore‐scale simulations , 2007 .

[2]  Martin Rumpf,et al.  Towards a Unified Framework for Scientific Computing , 2005 .

[3]  Lowe,et al.  Do Hydrodynamic Dispersion Coefficients Exist? , 1996, Physical review letters.

[4]  S. Turek,et al.  Benchmark computations based on Lattice-Boltzmann, Finite Element and Finite Volume Methods for laminar Flows , 2006 .

[5]  G. Nanson,et al.  Why some alluvial rivers develop an anabranching pattern , 2007 .

[6]  Béatrice Rivière,et al.  Discontinuous finite element methods for incompressible flows on subdomains with non-matching interfaces , 2006 .

[7]  Qinjun Kang,et al.  An improved lattice Boltzmann model for multicomponent reactive transport in porous media at the pore scale , 2007 .

[8]  Martin J. Blunt,et al.  Development of a pore network simulation model to study nonaqueous phase liquid dissolution , 2000 .

[9]  J. V. Revadekar,et al.  Global observed changes in daily climate extremes of temperature and precipitation , 2006 .

[10]  S. P. Kuttanikkad,et al.  An Unfitted Discontinuous Galerkin Finite Element Method for Pore Scale Simulations , 2008 .

[11]  J Koplik,et al.  Tracer dispersion in two-dimensional rough fractures. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[12]  Qinjun Kang,et al.  Lattice Boltzmann pore-scale model for multicomponent reactive transport in porous media , 2006 .

[13]  M. Blunt,et al.  Prediction of permeability for porous media reconstructed using multiple-point statistics. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[14]  Hans-Jörg Vogel,et al.  Quantitative morphology and network representation of soil pore structure , 2001 .

[15]  A. Leijnse,et al.  Approaches for modeling longitudinal dispersion in pore-networks , 2007 .

[16]  C. M. Elliott,et al.  Fitted and Unfitted Finite-Element Methods for Elliptic Equations with Smooth Interfaces , 1987 .

[17]  Finite element evaluation of diffusion and dispersion tensors in periodic porous media with advection , 2007 .

[18]  Timothy D. Scheibe,et al.  Simulations of reactive transport and precipitation with smoothed particle hydrodynamics , 2007, J. Comput. Phys..

[19]  Patrick J. Fox,et al.  Simulation of pore-scale dispersion in periodic porous media using smoothed particle hydrodynamics , 2002 .

[20]  C. Engwer,et al.  An unfitted finite element method using discontinuous Galerkin , 2009 .

[21]  Antti I. Koponen,et al.  Lattice-Boltzmann and finite-difference simulations for the permeability for three-dimensional porous media. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[22]  Andreas Dedner,et al.  A generic grid interface for parallel and adaptive scientific computing. Part II: implementation and tests in DUNE , 2008, Computing.

[23]  D. Grubert Effective dispersivities for a two‐dimensional periodic fracture network by a continuous time random walk analysis of single‐intersection simulations , 2001 .

[24]  M. Stöhr Analysis of Flow and Transport in Refractive Index Matched Porous Media , 2003 .

[25]  Douglas N. Arnold,et al.  Unified Analysis of Discontinuous Galerkin Methods for Elliptic Problems , 2001, SIAM J. Numer. Anal..

[26]  J. Nitsche Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind , 1971 .

[27]  Stefano Longhi Spiral waves in optical parametric oscillators , 2001 .

[28]  C. Engwer An Unfitted Discontinuous Galerkin Scheme for Micro-scale Simulations and Numerical Upscaling , 2009 .

[29]  M. Markus,et al.  On-off intermittency and intermingledlike basins in a granular medium. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[30]  Hans-Jörg Vogel,et al.  A numerical experiment on pore size, pore connectivity, water retention, permeability, and solute transport using network models , 2000 .

[31]  Andreas Dedner,et al.  A generic grid interface for parallel and adaptive scientific computing. Part I: abstract framework , 2008, Computing.