10Be evidence for delayed acquisition of remanent magnetization in marine sediments: Implication for a new age for the Matuyama–Brunhes boundary

[1]  F. Blanckenburg,et al.  Determination of the 10Be half-life by multicollector ICP-MS and liquid scintillation counting , 2010 .

[2]  G. Dollinger,et al.  A new value for the half-life of 10Be by Heavy-Ion Elastic Recoil Detection and liquid scintillation counting , 2010 .

[3]  A. Roberts,et al.  Post-depositional remanent magnetization lock-in and the location of the Matuyama-Brunhes geomagnetic reversal boundary in marine and Chinese loess sequences , 2008 .

[4]  J. Jouzel,et al.  An ice core perspective on the age of the Matuyama-Brunhes boundary , 2008 .

[5]  P. Renne,et al.  Synchronizing Rock Clocks of Earth History , 2008, Science.

[6]  M. Knudsen,et al.  In-phase anomalies in Beryllium-10 production and palaeomagnetic field behaviour during the Iceland Basin geomagnetic excursion , 2008 .

[7]  T. Stocker,et al.  Direct north-south synchronization of abrupt climate change record in ice cores using Beryllium 10 , 2007 .

[8]  Kenji Kawamura,et al.  The EDC3 chronology for the EPICA Dome C ice core , 2007 .

[9]  A. Schilt,et al.  Orbital and Millennial Antarctic Climate Variability over the Past 800,000 Years , 2007, Science.

[10]  P. Kubik,et al.  Highly resolved Beryllium-10 record from ODP Site 1089—A global signal? , 2007 .

[11]  J. Southon,et al.  Absolute calibration of 10Be AMS standards , 2007 .

[12]  Karl Fabian,et al.  Paleomagnetic reconstruction of the global geomagnetic field evolution during the Matuyama/Brunhes transition: Iterative Bayesian inversion and independent verification , 2007 .

[13]  J. Jouzel,et al.  10Be evidence for the Matuyama–Brunhes geomagnetic reversal in the EPICA Dome C ice core , 2006, Nature.

[14]  L. Tauxe,et al.  Depositional remanent magnetization: Toward an improved theoretical and experimental foundation , 2006 .

[15]  Hirokuni Oda,et al.  A geomagnetic paleointensity stack between 0.8 and 3.0 Ma from equatorial Pacific sediment cores , 2005 .

[16]  L. Meynadier,et al.  Geomagnetic dipole strength and reversal rate over the past two million years , 2005, Nature.

[17]  B. Jicha,et al.  Structural and temporal requirements for geomagnetic field reversal deduced from lava flows , 2005, Nature.

[18]  N. Shackleton,et al.  An Atlantic lead over Pacific deep-water change across Termination I: implications for the application of the marine isotope stage stratigraphy , 2005 .

[19]  M. Raymo,et al.  A Pliocene‐Pleistocene stack of 57 globally distributed benthic δ18O records , 2005 .

[20]  A. Roberts,et al.  Why are geomagnetic excursions not always recorded in sediments? Constraints from post-depositional remanent magnetization lock-in modelling , 2004 .

[21]  Xixi Zhao,et al.  Matuyama-Brunhes reversal and Kamikatsura event on Maui: paleomagnetic directions, 40 Ar/ 39 Ar ages and implications , 2004 .

[22]  J. Overpeck,et al.  14C Activity and Global Carbon Cycle Changes over the Past 50,000 Years , 2004, Science.

[23]  James G. Ogg,et al.  A Geologic Time Scale 2004: CONCEPTS AND METHODS , 2004 .

[24]  A. Mangini,et al.  Beryllium-10 in deep-sea sediments: a tracer for the Earth's magnetic field intensity during the last 200,000 years , 2003 .

[25]  A. Roberts,et al.  A 2.14-Myr astronomically tuned record of relative geomagnetic paleointensity from the western Philippine Sea , 2003 .

[26]  K. Wei,et al.  Astronomically calibrated ages for geomagnetic reversals within the Matuyama chron , 2002 .

[27]  H. Synal,et al.  Cosmogenic nuclides during Isotope Stages 2 and 3. , 2002 .

[28]  C. Kissel,et al.  Geomagnetic paleointensity and environmental record from Labrador Sea core MD95-2024: global marine sediment and ice core chronostratigraphy for the last 110 kyr , 2000 .

[29]  H. Synal,et al.  Reconstruction of the geomagnetic field between 20 and 60 kyr BP from cosmogenic radionuclides in the GRIP ice core , 2000 .

[30]  J. Beer,et al.  North Atlantic palaeointensity stack since 75ka (NAPIS–75) and the duration of the Laschamp event , 2000, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[31]  J. Channell,et al.  Geomagnetic palaeointensities and astrochronological ages for the Matuyama–Brunhes boundary and the boundaries of the Jaramillo Subchron: palaeomagnetic and oxygen isotope records from ODP Site 983 , 2000, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[32]  C. Richter,et al.  Paleointensity record from Pleistocene sediments (1.4-0 Ma) off the California margin , 1999 .

[33]  H. Igel,et al.  Lateral mixing and advection of reactive isotope tracers in ocean basins: observations and mechanisms , 1999 .

[34]  J. McManus,et al.  Orbital modulation of the Earth's magnetic field intensity , 1998, Nature.

[35]  B. Boudreau Mean mixed depth of sediments: The wherefore and the why , 1998 .

[36]  M. Suter,et al.  A 200 kyr record of cosmogenic radionuclide production rate and geomagnetic field intensity from 10Be in globally stacked deep-sea sediments , 1997 .

[37]  T. Herbert,et al.  Astronomical calibration of the Matuyama-Brunhes boundary: Consequences for magnetic remanence acquisition in marine carbonates and the Asian loess sequences , 1996 .

[38]  L. Tauxe,et al.  A precursor to the Matuyama/Brunhes transition-field instability as recorded in pelagic sediments , 1996 .

[39]  B. Boudreau Is burial velocity a master parameter for bioturbation , 1994 .

[40]  P. Damon,et al.  The global beryllium 10 cycle , 1991 .

[41]  P. deMenocal,et al.  Depth of post-depositional remanence acquisition in deep-sea sediments: a case study of the Brunhes-Matuyama reversal and oxygen isotopic Stage 19.1 , 1990 .

[42]  W. B. Harland,et al.  A Geologic time scale , 1982 .

[43]  K. Verosub Depositional and postdepositional processes in the magnetization of sediments , 1977 .

[44]  D. Kent Post-depositional Remanent Magnetisation in Deep-sea Sediment , 1973, Nature.

[45]  E. Irving POST‐DEPOSITIONAL DETRITAL REMANENT MAGNETIZATION IN A SYNTHETIC SEDIMENT , 1964 .