Algebraic Algorithms for Matching and Matroid Problems

We present new algebraic approaches for two well-known combinatorial problems: nonbipartite matching and matroid intersection. Our work yields new randomized algorithms that exceed or match the efficiency of existing algorithms. For nonbipartite matching, we obtain a simple, purely algebraic algorithm with running time $O(n^\omega)$ where $n$ is the number of vertices and $\omega$ is the matrix multiplication exponent. This resolves the central open problem of Mucha and Sankowski (2004). For matroid intersection, our algorithm has running time $O(nr^{\omega-1})$ for matroids with $n$ elements and rank $r$ that satisfy some natural conditions.

[1]  F. R. Gantmakher The Theory of Matrices , 1984 .

[2]  W. T. Tutte The Factorization of Linear Graphs , 1947 .

[3]  Andrew V. Goldberg,et al.  Maximum skew-symmetric flows and matchings , 2004, Math. Program..

[4]  Ying Xu,et al.  Efficient algorithms for independent assignment on graphic and linear matroids , 1989, 30th Annual Symposium on Foundations of Computer Science.

[5]  Vijay V. Vazirani,et al.  Randomized parallel algorithms for matroid union and intersection, with applications to arboresences and edge-disjoint spanning trees , 1992, SODA '92.

[6]  T. A. Dowling,et al.  MATCHING THEORY FOR COMBINATORIAL GEOMETRIES , 1970 .

[7]  Donald E. Knuth,et al.  The Asymptotic Number of Geometries , 1974, J. Comb. Theory A.

[8]  Ying Xu,et al.  Efficient Theoretic and Practical Algorithms for Linear Matroid Intersection Problems , 1996, J. Comput. Syst. Sci..

[9]  Joseph Cheriyan,et al.  Randomized Õ(M(|V|)) Algorithms for Problems in Matching Theory , 1997, SIAM J. Comput..

[10]  Shimon Even,et al.  An O (N2.5) algorithm for maximum matching in general graphs , 1975, 16th Annual Symposium on Foundations of Computer Science (sfcs 1975).

[11]  Don Coppersmith,et al.  Matrix multiplication via arithmetic progressions , 1987, STOC.

[12]  James G. Oxley,et al.  Matroid theory , 1992 .

[13]  László Lovász,et al.  On determinants, matchings, and random algorithms , 1979, FCT.

[14]  Satoru Iwata,et al.  The independent even factor problem , 2007, SODA '07.

[15]  Rajeev Motwani,et al.  Randomized Algorithms , 1995, SIGA.

[16]  Francesco Maffioli,et al.  Random Pseudo-Polynomial Algorithms for Exact Matroid Problems , 1992, J. Algorithms.

[17]  Gene H. Golub,et al.  Matrix computations , 1983 .

[18]  Alexander Schrijver,et al.  Combinatorial optimization. Polyhedra and efficiency. , 2003 .

[19]  Kazuo Murota,et al.  Discrete convex analysis , 1998, Math. Program..

[20]  Rajeev Motwani,et al.  Approximating Capacitated Routing and Delivery Problems , 1999, SIAM J. Comput..

[21]  Howard J. Karloff A las vegas rnc algorithm for maximum matching , 1986, Comb..

[22]  Piotr Sankowski,et al.  Maximum matchings via Gaussian elimination , 2004, 45th Annual IEEE Symposium on Foundations of Computer Science.

[23]  David R. Karger,et al.  Deterministic network coding by matrix completion , 2005, SODA '05.

[24]  Silvio Micali,et al.  An O(v|v| c |E|) algoithm for finding maximum matching in general graphs , 1980, 21st Annual Symposium on Foundations of Computer Science (sfcs 1980).

[25]  Michel X. Goemans,et al.  Minimum Bounded Degree Spanning Trees , 2006, 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06).

[26]  H. Whitney On the Abstract Properties of Linear Dependence , 1935 .

[27]  R. K. Shyamasundar,et al.  Introduction to algorithms , 1996 .

[28]  Jack Edmonds,et al.  Matroid Partition , 2010, 50 Years of Integer Programming.

[29]  J. Edmonds Paths, Trees, and Flowers , 1965, Canadian Journal of Mathematics.

[30]  Jack Edmonds,et al.  Submodular Functions, Matroids, and Certain Polyhedra , 2001, Combinatorial Optimization.

[31]  Satoru Fujishige,et al.  Submodular functions and optimization , 1991 .

[32]  Eugene L. Lawler,et al.  Matroid intersection algorithms , 1975, Math. Program..

[33]  Don Coppersmith,et al.  Rectangular Matrix Multiplication Revisited , 1997, J. Complex..

[34]  Jack Edmonds,et al.  Maximum matching and a polyhedron with 0,1-vertices , 1965 .

[35]  Chris D. Godsil,et al.  ALGEBRAIC COMBINATORICS , 2013 .

[36]  Audra E. Kosh,et al.  Linear Algebra and its Applications , 1992 .

[37]  Refael Hassin,et al.  An efficient polynomial time approximation scheme for the constrained minimum spanning tree problem using matroid intersection , 2004, SIAM J. Comput..

[38]  Vijay V. Vazirani,et al.  Maximum Matchings in General Graphs Through Randomization , 1989, J. Algorithms.

[39]  William J. Cook,et al.  Combinatorial optimization , 1997 .

[40]  Vijay V. Vazirani,et al.  A theory of alternating paths and blossoms for proving correctness of the $$O(\sqrt V E)$$ general graph maximum matching algorithm , 1990, Comb..

[41]  Michel X. Goemans Bounded-degree minimum spanning trees , 2006 .

[42]  Alexander I. Barvinok,et al.  New algorithms for lineark-matroid intersection and matroidk-parity problems , 1995, Math. Program..

[43]  William H. Cunningham,et al.  The optimal path-matching problem , 1996, Proceedings of 37th Conference on Foundations of Computer Science.

[44]  J. Cheriyan Randomized $\tilde{O}(M( , 1997 .

[45]  Thomas H. Cormen,et al.  Introduction to algorithms [2nd ed.] , 2001 .

[46]  Alfred V. Aho,et al.  The Design and Analysis of Computer Algorithms , 1974 .

[47]  Jack Edmonds,et al.  Matroids and the greedy algorithm , 1971, Math. Program..

[48]  A. Schrijver On the History of Combinatorial Optimization (Till 1960) , 2005 .

[49]  L. Mirsky,et al.  The Theory of Matrices , 1961, The Mathematical Gazette.

[50]  Nicholas J. A. Harvey Algebraic Structures and Algorithms for Matching and Matroid Problems , 2006, 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06).

[51]  G. Ding Discrete optimization , 1977 .

[52]  A. C. Aitken Determinants and matrices , 1940 .

[53]  J. Edmonds Matroid Intersection , 2022 .

[54]  Kazuo Murota,et al.  Matrices and Matroids for Systems Analysis , 2000 .

[55]  William H Cunningham,et al.  Improved Bounds for Matroid Partition and Intersection Algorithms , 1986, SIAM J. Comput..

[56]  Piotr Sankowski Processor Efficient Parallel Matching , 2007, Theory of Computing Systems.