Cone-Constrained Eigenvalue Problems: Structure of Cone Spectra

There is a rich literature devoted to the eigenvalue analysis of variational inequalities. Of special interest is the case in which the constraint set of the variational inequality is a closed convex cone. The set of eigenvalues of a matrix A relative to a closed convex cone K is called the K-spectrum of A. Cardinality and topological results for cone spectra depend on the kind of matrices and cones that are used as ingredients. It is important to distinguish for instance between symmetric and nonsymmetric matrices and, on the other hand, between polyhedral and nonpolyhedral cones. However, more subtle subdivisions are necessary for having a better understanding of the structure of cone spectra. This work elaborates on this issue.

[1]  A. Seeger,et al.  Critical angles between two convex cones I. General theory , 2016 .

[2]  Abderrahim Hantoute Contribution à la sensibilité et à la stabilité en optimisation et en théorie métrique des points critiques , 2003 .

[3]  Alberto Seeger,et al.  Local minima of quadratic forms on convex cones , 2009, J. Glob. Optim..

[4]  Pedro Gajardo,et al.  Equilibrium problems involving the Lorentz cone , 2014, J. Glob. Optim..

[5]  Aleka Kalapodi Cardinality of accumulation points of infinite sets , 2016 .

[6]  Alfredo N. Iusem,et al.  On convex cones with infinitely many critical angles , 2007 .

[7]  G. Holubová,et al.  A note on the relation between the Fučík spectrum and Pareto eigenvalues , 2015 .

[8]  A. Seeger Spectral classification of convex cones , 2020 .

[9]  A. Seeger Complementarity eigenvalue analysis of connected graphs , 2018 .

[10]  Alfredo N. Iusem,et al.  On pairs of vectors achieving the maximal angle of a convex cone , 2005, Math. Program..

[11]  Vilmar Trevisan,et al.  Complementary eigenvalues of graphs , 2017 .

[12]  Jianqing Chen Multiple positive solutions of a class of non autonomous Schrödinger–Poisson systems , 2015 .

[13]  Pavol Quittner Spectral analysis of variational inequalities , 1986 .

[14]  A. Seeger Eigenvalue analysis of equilibrium processes defined by linear complementarity conditions , 1999 .

[15]  E. Miersemann On higher eigenvalues of variational inequalities , 1983 .

[16]  R. Tyrrell Rockafellar,et al.  Variational Analysis , 1998, Grundlehren der mathematischen Wissenschaften.

[17]  Hanif D. Sherali,et al.  The second-order cone eigenvalue complementarity problem , 2016, Optim. Methods Softw..

[18]  A. Seeger,et al.  On spectral maps induced by convex cones , 2020 .

[19]  Samir Adly,et al.  A New Method for Solving Second-Order Cone Eigenvalue Complementarity Problems , 2015, J. Optim. Theory Appl..

[20]  R. Riddell Eigenvalue problems for nonlinear elliptic variational inequalities on a cone , 1977 .

[21]  G. P. Barker Theory of cones , 1981 .

[22]  Alfredo N. Iusem,et al.  Searching for critical angles in a convex cone , 2009, Math. Program..

[23]  Alberto Seeger,et al.  A Variational Approach to Copositive Matrices , 2010, SIAM Rev..

[24]  Wei Hong Yang,et al.  A Lanczos Method for Large-Scale Extreme Lorentz Eigenvalue Problems , 2018, SIAM J. Matrix Anal. Appl..

[25]  Alberto Seeger,et al.  On eigenvalues induced by a cone constraint , 2003 .