Optoelectronic Tweezers for the Manipulation of Cells, Microparticles, and Nanoparticles

Micro- and nanoparticle manipulation capabilities can benefit researchers in a wide variety of fields, from biological research to semiconductor physics. Optoelectronic tweezers (OET) is a novel technique that complements existing manipulation technologies. OET provides optically-controlled manipulation at the single-particle level. It is a dynamic, reconfigurable, minimally-invasive tool capable of massively parallel manipulation. In this chapter, the operating principle of OET will be explained, along with device design considerations and operational regimes. The capabilities of OET will be showcased in the context of applications in biological cell handling and micro- and nanoparticle assembly.

[1]  Peidong Yang,et al.  Dynamic manipulation and separation of individual semiconducting and metallic nanowires. , 2008, Nature photonics.

[2]  Seong-Won Nam,et al.  Programmable manipulation of motile cells in optoelectronic tweezers using a grayscale image , 2008 .

[3]  Niyazi Serdar Sariciftci,et al.  Effects of Postproduction Treatment on Plastic Solar Cells , 2003 .

[4]  M. Heller,et al.  Isolation of cultured cervical carcinoma cells mixed with peripheral blood cells on a bioelectronic chip. , 1998, Analytical chemistry.

[5]  Steven L Neale,et al.  Phototransistor-based optoelectronic tweezers for dynamic cell manipulation in cell culture media. , 2010, Lab on a chip.

[6]  Ronald Pethig,et al.  Enhancing traveling-wave dielectrophoresis with signal superposition. , 2003, IEEE engineering in medicine and biology magazine : the quarterly magazine of the Engineering in Medicine & Biology Society.

[7]  M.C. Wu,et al.  Light-Actuated AC Electroosmosis for Nanoparticle Manipulation , 2008, Journal of Microelectromechanical Systems.

[8]  O. Tabata,et al.  Manipulation system for nano/micro components integration via transportation and self-assembly , 2008, 2008 IEEE 21st International Conference on Micro Electro Mechanical Systems.

[9]  M. Sheetz,et al.  A force-dependent switch reverses type IV pilus retraction. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[10]  Hsan-Yin Hsu,et al.  Parallel single-cell light-induced electroporation and dielectrophoretic manipulation. , 2009, Lab on a chip.

[11]  Y. Huang,et al.  Dielectrophoretic separation of cancer cells from blood , 1995, IAS '95. Conference Record of the 1995 IEEE Industry Applications Conference Thirtieth IAS Annual Meeting.

[12]  Thomas B. Jones,et al.  Electromechanics of Particles , 1995 .

[13]  D. Grier A revolution in optical manipulation , 2003, Nature.

[14]  Do-Hyun Lee,et al.  Enhanced discrimination of normal oocytes using optically induced pulling-up dielectrophoretic force. , 2009, Biomicrofluidics.

[15]  Herbert Shea,et al.  Carbon nanotubes: nanomechanics, manipulation, and electronic devices , 1999 .

[16]  Luke P. Lee,et al.  Single-cell electroporation arrays with real-time monitoring and feedback control. , 2007, Lab on a chip.

[17]  S. Krishna,et al.  Room-Temperature Optically Pumped (Al)GaSb Vertical-Cavity Surface-Emitting Laser Monolithically Grown on an Si(1 0 0) Substrate , 2006, IEEE Journal of Selected Topics in Quantum Electronics.

[18]  Bahram Jalali,et al.  Demonstration of a silicon Raman laser. , 2004, Optics express.

[19]  M.C. Wu,et al.  Optically Controlled Cell Discrimination and Trapping Using Optoelectronic Tweezers , 2007, IEEE Journal of Selected Topics in Quantum Electronics.

[20]  Roberto Guerrieri,et al.  Electronic sorting and recovery of single live cells from microlitre sized samples. , 2006, Lab on a chip.

[21]  Ming C. Wu,et al.  Massively parallel manipulation of single cells and microparticles using optical images , 2005, Nature.

[22]  Ming C. Wu,et al.  Heterogeneous integration of InGaAsP microdisk laser on a silicon platform using optofluidic assembly , 2009 .

[23]  Wei Wang,et al.  Manipulation of Biosamples and Microparticles using Optical Images on Polymer Devices , 2009, 2009 IEEE 22nd International Conference on Micro Electro Mechanical Systems.

[24]  Kishan Dholakia,et al.  Extended-area optically induced organization of microparticles on a surface , 2005 .

[25]  L.Y. Lin,et al.  Trapping and Manipulation of Biological Particles Through a Plasmonic Platform , 2007, IEEE Journal of Selected Topics in Quantum Electronics.

[26]  Andreas Manz,et al.  Micro total analysis systems: latest achievements. , 2008, Analytical chemistry.

[27]  K. Dholakia,et al.  Microfluidic sorting in an optical lattice , 2003, Nature.

[28]  B. Tromberg,et al.  Cell damage in near-infrared multimode optical traps as a result of multiphoton absorption. , 1996, Optics letters.

[29]  M. Wu,et al.  Trapping and Transport of Silicon Nanowires Using Lateral-Field Optoelectronic Tweezers , 2007, 2007 Conference on Lasers and Electro-Optics (CLEO).

[30]  Jin Jang,et al.  Lab-on-a-display: a new microparticle manipulation platform using a liquid crystal display (LCD) , 2007 .

[31]  M. Paniccia,et al.  A continuous-wave Raman silicon laser , 2005, Nature.

[32]  M.C. Wu,et al.  Operational Regimes and Physics Present in Optoelectronic Tweezers , 2008, Journal of Microelectromechanical Systems.

[33]  J. Bowers,et al.  Electrically pumped hybrid AlGaInAs-silicon evanescent laser. , 2006, Optics express.

[34]  K Bergman,et al.  Characterization of photodamage to Escherichia coli in optical traps. , 1999, Biophysical journal.

[35]  H. A. Pohl,et al.  Some Effects of Nonuniform Fields on Dielectrics , 1958 .

[36]  R. Krupke,et al.  Separation of Metallic from Semiconducting Single-Walled Carbon Nanotubes , 2003, Science.

[37]  R Baets,et al.  Electrically pumped InP-based microdisk lasers integrated with a nanophotonic silicon-on-insulator waveguide circuit. , 2007, Optics express.

[38]  M.C. Wu,et al.  Optofluidic assembly of red/blue/green semiconductor nanowires , 2009, 2009 Conference on Lasers and Electro-Optics and 2009 Conference on Quantum electronics and Laser Science Conference.

[39]  Peter J. Pauzauskie,et al.  Optical trapping and integration of semiconductor nanowire assemblies in water , 2006, Nature materials.

[40]  O Orwar,et al.  Altering the biochemical state of individual cultured cells and organelles with ultramicroelectrodes. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[41]  M Mazilu,et al.  The resolution of optical traps created by Light Induced Dielectrophoresis (LIDEP). , 2007, Optics express.

[42]  Hui Liu,et al.  Dielectrophoretic assembly and integration of nanowire devices with functional CMOS operating circuitry , 2004 .

[43]  S. Cho,et al.  Creating, transporting, cutting, and merging liquid droplets by electrowetting-based actuation for digital microfluidic circuits , 2003 .

[44]  Michael A. Teitell,et al.  Floating electrode optoelectronic tweezers: Light-driven dielectrophoretic droplet manipulation in electrically insulating oil medium. , 2008, Applied physics letters.

[45]  S. Chu,et al.  Observation of a single-beam gradient force optical trap for dielectric particles. , 1986, Optics letters.

[46]  Eric P. Y. Chiou,et al.  EWOD-driven droplet microfluidic device integrated with optoelectronic tweezers as an automated platform for cellular isolation and analysis. , 2009, Lab on a chip.

[47]  Klavs F Jensen,et al.  Microfluidic based single cell microinjection. , 2008, Lab on a chip.

[48]  K. O. Greulich,et al.  Comet Assay Measurements of DNA Damage in Cells by Laser Microbeams and Trapping Beams with Wavelengths Spanning a Range of 308 nm to 1064 nm , 2002, Radiation research.

[49]  M.C. Wu,et al.  Cell addressing and trapping using novel optoelectronic tweezers , 2004, 17th IEEE International Conference on Micro Electro Mechanical Systems. Maastricht MEMS 2004 Technical Digest.

[50]  Sam Kassegne,et al.  Separation of Simulants of Biological Warfare Agents from Blood by a Miniaturized Dielectrophoresis Device , 2003 .

[51]  Jin Jang,et al.  Interactive manipulation of blood cells using a lens‐integrated liquid crystal display based optoelectronic tweezers system , 2008, Electrophoresis.

[52]  M.C. Wu,et al.  Dynamic Cell and Microparticle Control via Optoelectronic Tweezers , 2007, Journal of Microelectromechanical Systems.

[53]  Yi-Kuen Lee,et al.  Using a micro electroporation chip to determine the optimal physical parameters in the uptake of biomolecules in HeLa cells. , 2007, Bioelectrochemistry.

[54]  Kishan Dholakia,et al.  Light-induced cell separation in a tailored optical landscape , 2005 .

[55]  Hsan-Yin Hsu,et al.  Antifouling coatings for optoelectronic tweezers. , 2009, Lab on a chip.

[56]  Steven L Neale,et al.  Trap profiles of projector based optoelectronic tweezers (OET) with HeLa cells. , 2009, Optics express.

[57]  Michael D Buschmann,et al.  Gene delivery by electroporation after dielectrophoretic positioning of cells in a non-uniform electric field. , 2008, Bioelectrochemistry.

[58]  R. Muller,et al.  Silicon-processed overhanging microgripper , 1992 .

[59]  S. Neale,et al.  Parallel assembly of nanowires using lateral-field optoelectronic tweezers , 2008, 2008 IEEE/LEOS International Conference on Optical MEMs and Nanophotonics.

[60]  Jin Jang,et al.  Reduction of nonspecific surface-particle interactions in optoelectronic tweezers , 2008 .

[61]  R. Fair,et al.  An integrated digital microfluidic lab-on-a-chip for clinical diagnostics on human physiological fluids. , 2004, Lab on a chip.

[62]  N. Chronis,et al.  Electrothermally activated SU-8 microgripper for single cell manipulation in solution , 2005, Journal of Microelectromechanical Systems.

[63]  Giovanni De Gasperis,et al.  Trapping of micrometre and sub-micrometre particles by high-frequency electric fields and hydrodynamic forces , 1996 .

[64]  Peter R. C. Gascoyne,et al.  Dielectrophoresis-based sample handling in general-purpose programmable diagnostic instruments , 2004, Proceedings of the IEEE.

[65]  M. Dickinson,et al.  Nanometric optical tweezers based on nanostructured substrates , 2008 .

[66]  Minoru Seki,et al.  Millisecond treatment of cells using microfluidic devices via two-step carrier-medium exchange. , 2008, Lab on a chip.

[67]  E. Neumann,et al.  Gene transfer into mouse lyoma cells by electroporation in high electric fields. , 1982, The EMBO journal.

[68]  Charlie Gosse,et al.  Magnetic tweezers: micromanipulation and force measurement at the molecular level. , 2002, Biophysical journal.

[69]  L. Di Cioccio,et al.  Heterogeneous integration of microdisk lasers on silicon strip waveguides for optical interconnects , 2006, IEEE Photonics Technology Letters.

[70]  Hyundoo Hwang,et al.  Rapid and selective concentration of microparticles in an optoelectrofluidic platform. , 2009, Lab on a chip.

[71]  Chengkuo Lee,et al.  Controllability of Non-Contact Cell Manipulation by Image Dielectrophoresis (iDEP) , 2005 .