Forward model and Jacobians for Tropospheric Emission Spectrometer retrievals

The Tropospheric Emission Spectrometer (TES) is a high-resolution spaceborne sensor that is capable of observing tropospheric species. In order to exploit fully TES's potential for tropospheric constituent retrievals, an accurate and fast operational forward model was developed for TES. The forward model is an important component of the TES retrieval model, the Earth Limb and Nadir Operational Retrieval (ELANOR), as it governs the accuracy and speed of the calculations for the retrievals. In order to achieve the necessary accuracy and computational efficiency, TES adopted the strategy of utilizing precalculated absorption coefficients generated by the line-by-line calculations provided by line-by-line radiation transfer modeling. The decision to perform the radiative transfer with the highest monochromatic accuracy attainable, rather than with an accelerated scheme that has the potential to add algorithmic forward model error, has proven to be very successful for TES retrievals. A detailed description of the TES forward model and Jacobians is described. A preliminary TES observation is provided as an example to demonstrate that the TES forward model calculations represent TES observations. Also presented is a validation example, which is part of the extensive forward model validation effort.

[1]  S. Clough,et al.  Dry Bias and Variability in Vaisala RS80-H Radiosondes: The ARM Experience , 2003 .

[2]  Shepard A. Clough,et al.  Retrieval of tropospheric ozone from simulations of nadir spectral radiances as observed from space , 1995 .

[3]  Anthony H. McDaniel,et al.  Infrared absorption cross sections for N2O5 , 1988 .

[4]  David A. Newnham,et al.  INFRARED BAND STRENGTHS AND ABSORPTION CROSS-SECTIONS OF HFC-32 VAPOUR , 1996 .

[5]  A. Goldman,et al.  Absorption parameters of very dense molecular spectra for the HITRAN compilation , 1992 .

[6]  Reinhard Beer,et al.  Retrieval of tropospheric ozone from simulations of limb spectral radiances as observed from space: LIMB RETRIEVAL OF TROPOSPHERIC OZONE , 2002 .

[7]  David M. Rider,et al.  TES level 1 algorithms: interferogram processing, geolocation, radiometric, and spectral calibration , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[8]  Toth,et al.  Water Vapor Measurements between 590 and 2582 cm-1: Line Positions and Strengths. , 1998, Journal of molecular spectroscopy.

[9]  Shepard A. Clough,et al.  Spectroscopic improvements providing evidence of formic acid in AERI-LBLRTM validation spectra , 2003 .

[10]  Franz Schreier,et al.  Spectroscopic database for ozone in the fundamental spectral regions , 2002 .

[11]  X. Wu,et al.  Emissivity of rough sea surface for 8-13 num: modeling and verification. , 1997, Applied optics.

[12]  Shepard A. Clough,et al.  Atmospheric radiative transfer modeling: a summary of the AER codes , 2005 .

[13]  F. X. Kneizys,et al.  Line shape and the water vapor continuum , 1989 .

[14]  E. Mlawer,et al.  Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave , 1997 .

[15]  David M. Rider,et al.  Tropospheric emission spectrometer for the Earth Observing System’s Aura satellite , 2001 .

[16]  A. Goldman,et al.  Temperature-dependent infrared cross sections for CFC-11, CFC-12, CFC-13, CFC-14, CFC-22, CFC-113, CFC-114, and CFC-115. Technical report , 1991 .

[17]  David A. Newnham,et al.  Infrared absorption cross-sections and integrated absorption intensities of HFC-134 and HFC-143a vapour , 1998 .

[18]  W. J. Lafferty,et al.  Experimental Investigation of the Self{ and N 2 {broadened Continuum within the 2 Band of Water Vapor , 2022 .

[19]  M. Iacono,et al.  Line-by-Line Calculations of Atmospheric Fluxes and Cooling Rates: Application to Water Vapor , 1992 .

[20]  S. Kravitz,et al.  Synthetic infrared spectra. , 1997, Optics letters.

[21]  Yuk L. Yung,et al.  The Atmospheric Trace Molecule Spectroscopy (ATMOS) Experiment: Deployment on the ATLAS Space Shuttle Missions , 1996 .

[22]  S. Clough,et al.  Validation of CO2 line parameters used in temperature retrievals , 2003 .

[23]  Prasad Varanasi,et al.  Measurement of the absorption cross-sections of CFC-11 at conditions representing various model atmospheres , 1994 .

[24]  S. Hannon,et al.  A compilation of first-order line-mixing coefficients for CO2 Q-branches , 1994 .

[25]  Prasad Varanasi,et al.  New laboratory data on the spectral line parameters in the 1-0 and 2-0 bands of relevant to atmospheric remote sensing , 2002 .

[26]  V. M. Devi,et al.  THE HITRAN MOLECULAR DATABASE: EDITIONS OF 1991 AND 1992 , 1992 .

[27]  P. Varanasi,et al.  Infrared absorption-coefficient data on SF6 applicable to atmospheric remote sensing , 1992 .

[28]  B. Armstrong Spectrum line profiles: The Voigt function , 1967 .

[29]  A. McDaniel,et al.  The temperature dependent, infrared absorption cross-sections for the chlorofluorocarbons: CFC-11, CFC-12, CFC-13, CFC-14, CFC-22, CFC-113, CFC-114, and CFC-115 , 1991 .

[30]  K. Bowman,et al.  Implementation of cloud retrievals for Tropospheric Emission Spectrometer (TES) atmospheric retrievals: part 1. Description and characterization of errors on trace gas retrievals , 2006 .

[31]  K. Jucks,et al.  Spectra calculations in central and wing regions of CO2 IR bands between 10 and 20 μm. III: atmospheric emission spectra , 2004 .

[32]  Laurence S. Rothman,et al.  Atmospheric Spectral Transmittance And Radiance: FASCOD1 B , 1981, Other Conferences.

[33]  P. Varanasi Absorption spectra of HCFC-22 around 829 cm-1 at atmospheric conditions , 1992 .

[34]  F. X. Kneizys,et al.  Atmospheric Attenuation Of Laser Radiation , 1983, Other Conferences.

[35]  C. Clerbaux,et al.  Infrared cross sections and global warming potentials of 10 alternative hydrohalocarbons , 1993 .

[36]  William L. Smith,et al.  Observations of the infrared radiative properties of the ocean-implications for the measurement of sea surface temperature via satellite remote sensing , 1996 .

[37]  Prasad Varanasi,et al.  Absorption coefficients of CFC-11 and CFC-12 needed for atmospheric remote sensing and global warming studies , 1992 .

[38]  Gang Li,et al.  The HITRAN 2008 molecular spectroscopic database , 2005 .

[39]  A. Chedin,et al.  A Fast Line-by-Line Method for Atmospheric Absorption Computations: The Automatized Atmospheric Absorption Atlas , 1981 .

[40]  Thomas S. Pagano,et al.  AIRS Level 1b Algorithm Theoretical Basis Document , 2000 .

[41]  Johannes Orphal,et al.  High‐resolution absorption cross sections of chlorine nitrate in the ν2 band region around 1292 cm−1 at stratospheric temperatures , 1994 .

[42]  Prasad Varanasi,et al.  Thermal infrared absorption coefficients of CFC-12 at atmospheric conditions , 1994 .

[43]  Reinhard Beer,et al.  Tropospheric emission spectrometer: retrieval method and error analysis , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[44]  R. L. Hawkins,et al.  Energy levels, intensities, and linewidths of atmospheric carbon dioxide bands , 1992 .

[45]  R. Kurucz Synthetic Infrared Spectra , 1994 .

[46]  S. A. Clough,et al.  FFTSCAN: A program for spectral smoothing using Fourier transforms , 1992 .

[47]  C. Rinsland,et al.  Mid-infrared extinction by sulfate aerosols from the Mt Pinatubo eruption , 1994 .

[48]  R Beer,et al.  Instrument line-shape modeling and correction for off-axis detectors in fourier-transform spectrometry. , 2000, Applied optics.

[49]  Shepard A. Clough,et al.  Accelerated monochromatic radiative transfer for scattering atmospheres: Application of a new model to spectral , 1997 .

[50]  W. B. Johnston,et al.  Absolute absorption coefficients of ClONO2 infrared bands at stratospheric temperatures , 1988 .

[51]  F. X. Kneizys,et al.  AFGL atmospheric constituent profiles (0-120km) , 1986 .

[52]  A. Goldman,et al.  Spectral parameters for the ν6 region of HCOOH and its measurement in the infrared tropospheric spectrum , 1999 .

[53]  A. A. Chursin,et al.  The 1997 spectroscopic GEISA databank , 1999 .

[54]  R. Norton,et al.  New apodizing functions for Fourier spectrometry , 1976 .

[55]  V. Nemtchinov,et al.  Spectral absorption-coefficient data on HCFC-22 and SF6 for remote-sensing applications , 1994 .

[56]  Laurence S. Rothman,et al.  The HITRAN molecular spectroscopic database: edition of 2000 including updates through 2001 , 2003 .

[57]  Laurence S. Rothman,et al.  The HITRAN molecular spectroscopic database and HAWKS (HITRAN atmospheric workstation) , 1998, Defense, Security, and Sensing.

[58]  Laurence S. Rothman,et al.  Reprint of: The HITRAN molecular spectroscopic database and HAWKS (HITRAN Atmospheric Workstation): 1996 edition , 1998 .

[59]  F. X. Kneizys,et al.  Convolution algorithm for the Lorentz function. , 1979, Applied optics.

[60]  D. Chris Benner,et al.  Methane Line Parameters in HITRAN , 2003 .

[61]  Shepard A. Clough,et al.  The QME AERI LBLRTM: A Closure Experiment for Downwelling High Spectral Resolution Infrared Radiance , 2004 .

[62]  Robert L. Kurucz,et al.  The Solar Spectrum: Atlases and Line Identifications , 1995 .

[63]  John J. Orlando,et al.  Temperature dependence of the infrared absorption cross sections of carbon tetrachloride , 1992 .

[64]  Jonathan P. Taylor,et al.  The ISSWG line-by-line inter-comparison experiment , 2003 .

[65]  F. Thibault,et al.  Infrared collision-induced absorption by O2 near 6.4 microm for atmospheric applications: measurements and empirical modeling. , 1996, Applied optics.

[66]  K. Masuda,et al.  Emissivity of pure and sea waters for the model sea surface in the infrared window regions , 1988 .