Metrization and Simulation of Controlled Hybrid Systems

The study of controlled hybrid systems requires practical tools for approximation and comparison of system behaviors. Existing approaches to these problems impose undue restrictions on the system's continuous and discrete dynamics. Metrization and simulation of controlled hybrid systems is considered here in a unified framework by constructing a state space metric. The metric is applied to develop a numerical simulation algorithm that converges uniformly, with a known rate of convergence, to orbitally stable executions of controlled hybrid systems, up to and including Zeno events. Benchmark hybrid phenomena illustrate the utility of the proposed tools.

[1]  E. J. McShane,et al.  Extension of range of functions , 1934 .

[2]  J. Lamperti ON CONVERGENCE OF STOCHASTIC PROCESSES , 1962 .

[3]  W. Rudin Principles of mathematical analysis , 1964 .

[4]  V. Utkin Variable structure systems with sliding modes , 1977 .

[5]  M. B. Carver Efficient integration over discontinuities in ordinary differential equation simulations , 1978 .

[6]  C. A. Desoer,et al.  Nonlinear Systems Analysis , 1978 .

[7]  R. McN. Alexander,et al.  The Gaits of Bipedal and Quadrupedal Animals , 1984 .

[8]  Gerald B. Folland,et al.  Real Analysis: Modern Techniques and Their Applications , 1984 .

[9]  Marc H. Raibert,et al.  Running on four legs as though they were one , 1986, IEEE J. Robotics Autom..

[10]  L. Tavernini Differential automata and their discrete simulators , 1987 .

[11]  Aleksej F. Filippov,et al.  Differential Equations with Discontinuous Righthand Sides , 1988, Mathematics and Its Applications.

[12]  Lawrence F. Shampine,et al.  Reliable solution of special event location problems for ODEs , 1991, TOMS.

[13]  J. Guckenheimer,et al.  Simulation for hybrid systems and nonlinear control , 1992, [1992] Proceedings of the 31st IEEE Conference on Decision and Control.

[14]  Anil Nerode,et al.  Models for Hybrid Systems: Automata, Topologies, Controllability, Observability , 1992, Hybrid Systems.

[15]  James L. Hein,et al.  Discrete structures, logic, and computability , 1994 .

[16]  Elijah Polak,et al.  Optimization: Algorithms and Consistent Approximations , 1997 .

[17]  M. Schatzman Uniqueness and continuous dependence on data for one-dimensional impact problems , 1998 .

[18]  M. Golubitsky,et al.  Symmetry in locomotor central pattern generators and animal gaits , 1999, Nature.

[19]  Natasha Loder,et al.  Journal under attack over controversial paper on GM food , 1999, Nature.

[20]  M. Egerstedt,et al.  On the regularization of Zeno hybrid automata , 1999 .

[21]  Karl Henrik Johansson,et al.  Towards a Geometric Theory of Hybrid Systems , 2000, HSCC.

[22]  Arcwise Isometries,et al.  A Course in Metric Geometry , 2001 .

[23]  S. Sastry,et al.  Zeno hybrid systems , 2001 .

[24]  O. Janin,et al.  Comparison of several numerical methods for mechanical systems with impacts , 2001 .

[25]  Vijay Kumar,et al.  Accurate Event Detection for Simulating Hybrid Systems , 2001, HSCC.

[26]  Daniel E. Koditschek,et al.  RHex: A Simple and Highly Mobile Hexapod Robot , 2001, Int. J. Robotics Res..

[27]  Laetitia Paoli,et al.  A Numerical Scheme for Impact Problems II: The Multidimensional Case , 2002, SIAM J. Numer. Anal..

[28]  John M. Lee Introduction to Smooth Manifolds , 2002 .

[29]  Laetitia Paoli,et al.  A Numerical Scheme for Impact Problems I: The One-Dimensional Case , 2002, SIAM J. Numer. Anal..

[30]  Karl Henrik Johansson,et al.  Dynamical properties of hybrid automata , 2003, IEEE Trans. Autom. Control..

[31]  Philip Holmes,et al.  A Simply Stabilized Running Model , 2005, SIAM Rev..

[32]  Daniel E. Koditschek,et al.  Hybrid zero dynamics of planar biped walkers , 2003, IEEE Trans. Autom. Control..

[33]  Ansgar Fehnker,et al.  Benchmarks for Hybrid Systems Verification , 2004, HSCC.

[34]  S. Shankar Sastry,et al.  A Homology Theory for Hybrid Systems: Hybrid Homology , 2005, HSCC.

[35]  Rafal Goebel,et al.  Solutions to hybrid inclusions via set and graphical convergence with stability theory applications , 2006, Autom..

[36]  Jonathan E. Clark,et al.  iSprawl: Design and Tuning for High-speed Autonomous Open-loop Running , 2006, Int. J. Robotics Res..

[37]  Philip Holmes,et al.  Three-dimensional Translational Dynamics and Stability of Multi-legged Runners , 2006, Int. J. Robotics Res..

[38]  Antoine Girard,et al.  Approximation Metrics for Discrete and Continuous Systems , 2006, IEEE Transactions on Automatic Control.

[39]  Randall J. LeVeque,et al.  Finite difference methods for ordinary and partial differential equations - steady-state and time-dependent problems , 2007 .

[40]  D. Gokhman Topologies for hybrid solutions , 2008 .

[41]  A. Teel,et al.  Relaxation Results for Hybrid Inclusions , 2008 .

[42]  O. Scherzer,et al.  Weakly Differentiable Functions , 2009 .

[43]  L. Tavernini Generic asymptotic error estimates for the numerical simulation of hybrid systems , 2009 .

[44]  Samuel Burden,et al.  Bio-inspired design and dynamic maneuverability of a minimally actuated six-legged robot , 2010, 2010 3rd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics.

[45]  Ricardo G. Sanfelice,et al.  Dynamical properties of hybrid systems simulators , 2010, Autom..

[46]  S. Shankar Sastry,et al.  Numerical integration of hybrid dynamical systems via domain relaxation , 2011, IEEE Conference on Decision and Control and European Control Conference.

[47]  Wei Zhang,et al.  Hybrid Systems in Robotics , 2011, IEEE Robotics & Automation Magazine.

[48]  Daniel E. Koditschek,et al.  Standing self-manipulation for a legged robot , 2012, 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[49]  Daniel E. Koditschek,et al.  Legged Self-Manipulation , 2013, IEEE Access.