LAMINATED WAVE TURBULENCE: GENERIC ALGORITHMS I
暂无分享,去创建一个
[1] A. Kolmogorov. The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers , 1991, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.
[2] P. Couturier. Japan , 1988, The Lancet.
[3] Julius Magalona Basilla. On the solution of $x^2 + dy^2 = m$ , 2004 .
[4] V. Zakharov,et al. Weak turbulence of capillary waves , 1967 .
[5] Peyo Stoilov,et al. Composition operators on the space of Couchy-Stiltjes transforms , 2008 .
[6] SOCIETY , 2008, Society.
[7] L. Chambers. Linear and Nonlinear Waves , 2000, The Mathematical Gazette.
[8] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[9] Gregory Falkovich,et al. Kolmogorov Spectra of Turbulence I , 1992 .
[10] A. Nayfeh. Introduction To Perturbation Techniques , 1981 .
[11] E. Kartashova. Partitioning of ensembles of weakly interacting dispersing waves in resonators into disjoint classes , 1990 .
[12] N. S. Barnett,et al. Private communication , 1969 .
[13] Discreteness and its effect on water-wave turbulence , 2005, math-ph/0507054.
[14] Elena Kartashova,et al. Fast Computation Algorithm for Discrete Resonances among Gravity Waves , 2006 .