Enhanced dehydrogenation/hydrogenation kinetics of the Mg(NH 2) 22LiH system with NaOH additive

[1]  Ping Chen,et al.  Investigations on the solid state interaction between LiAlH4 and NaNH2 , 2010 .

[2]  M. Parrinello,et al.  First Principles Study of the LiNH2/Li2NH Transformation , 2010 .

[3]  H. Pan,et al.  Reversible hydrogenation/dehydrogenation performances of the Na2LiAlH6–Mg(NH2)2 system , 2010 .

[4]  M. Fichtner,et al.  In-situ neutron diffraction study of magnesium amide/lithium hydride stoichiometric mixtures with lithium hydride excess , 2010 .

[5]  Chu Liang,et al.  Hydrogen storage reaction over a ternary imide Li2Mg2N3H3. , 2010, Physical chemistry chemical physics : PCCP.

[6]  K. Luo,et al.  Reaction pathways determined by mechanical milling process for dehydrogenation/hydrogenation of the LiNH(2)/MgH(2) system. , 2010, Chemistry.

[7]  T. Yadav,et al.  Studies on dehydrogenation characteristic of Mg(NH2)2/LiH mixture admixed with vanadium and vanadium based catalysts (V, V2O5 and VCl3) , 2010 .

[8]  K. Luo,et al.  Hydrogen storage in a Li–Al–N ternary system , 2009 .

[9]  Z. Yang,et al.  Low temperature milling of the LiNH2 + LiH hydrogen storage system , 2009 .

[10]  Shumao Wang,et al.  The desorption kinetics of the Mg(NH2)2 + LiH mixture , 2009 .

[11]  Lai-Peng Ma,et al.  Catalytically enhanced dehydrogenation of Li–Mg–N–H hydrogen storage material by transition metal nitrides , 2009 .

[12]  K. Luo,et al.  Size-dependent kinetic enhancement in hydrogen absorption and desorption of the Li-Mg-N-H system. , 2009, Journal of the American Chemical Society.

[13]  H. Langmi,et al.  In situ thermal desorption of H2 from LiNH2–2LiH monitored by environmental SEM , 2009 .

[14]  Yan Liang,et al.  Catalytically Enhanced Hydrogen Storage Properties of Mg(NH2)2 + 2LiH Material by Graphite-Supported Ru Nanoparticles , 2008 .

[15]  Yongfeng Liu,et al.  Improvement of Hydrogen Storage Properties of the LiMgNH System by Addition of LiBH 4 , 2008 .

[16]  Jianhui Wang,et al.  Hydrogen Storage in a LiNH 2 -MgH 2 (1:1) System , 2008 .

[17]  Yongfeng Liu,et al.  Structural and Compositional Changes during Hydrogenation/Dehydrogenation of the Li−Mg−N−H System , 2007 .

[18]  Chang Liu,et al.  Improved hydrogen storage performance of Li–Mg–N–H materials by optimizing composition and adding single-walled carbon nanotubes , 2007 .

[19]  Ping-Ou Chen,et al.  Improvement of the hydrogen-storage performances of Li–Mg–N–H system , 2007 .

[20]  C. Wolverton,et al.  Kinetic improvement in the Mg(NH2)2-LiH storage system by product seeding , 2007 .

[21]  Allan Walton,et al.  A mechanism for non-stoichiometry in the lithium amide/lithium imide hydrogen storage reaction. , 2007, Journal of the American Chemical Society.

[22]  K. Murata,et al.  Hydrogen release from Mg(NH2)2-MgH2 through mechanochemical reaction. , 2006, The journal of physical chemistry. B.

[23]  Ping Chen,et al.  Mechanistic investigations on the heterogeneous solid-state reaction of magnesium amides and lithium hydrides. , 2006, The journal of physical chemistry. B.

[24]  H. Fujii,et al.  Hydrogen storage properties of Li-Mg-N-H systems with different ratios of LiH/Mg(NH2)2. , 2006, The journal of physical chemistry. B.

[25]  Qiang Xu,et al.  Reaction of hydrogen with sodium oxide: A reversible hydrogenation/dehydrogenation system , 2006 .

[26]  Ping-Ou Chen,et al.  Thermodynamic and kinetic investigations of the hydrogen storage in the Li–Mg–N–H system , 2005 .

[27]  F. Mertens,et al.  Hydrogen-generating solid-state hydride/hydroxide reactions , 2005 .

[28]  Weifang Luo,et al.  (LiNH2-MgH2): a viable hydrogen storage system , 2004 .

[29]  Jianjiang Hu,et al.  Ternary Imides for Hydrogen Storage , 2004 .

[30]  H. Fujii,et al.  Mechanism of Novel Reaction from LiNH2 and LiH to Li2NH and H2 as a Promising Hydrogen Storage System , 2004 .

[31]  K. L. Tan,et al.  Interaction of hydrogen with metal nitrides and imides , 2002, Nature.

[32]  R. C. Weast CRC Handbook of Chemistry and Physics , 1973 .